"\\textsf{If} \\hspace{0.1cm}a, b\\hspace{0.1cm} \\textsf{and}\\hspace{0.1cm} c \\hspace{0.1cm}\\textsf{are the}\\\\\\textsf{sides opposite to angles} \\hspace{0.1cm}A, B,\\hspace{0.1cm}\\&\\hspace{0.1cm}C.\\\\\n\n\n\\textsf{By Cosine Rule,}\\\\\n\nb^2 = 32^2 + 46^2 - (2 \\times 32 \\times 46\\cos{140\\degree})\\\\\n\n\nb^2 = 1024 + 2116 - 2944\\cos{140\\degree}\\\\\n\n\nb^2 = 3140 - 2944\\cos{140\\degree} \\\\\n\n\nb^2 = 3140 + 2255.234841 \\\\\n\n\nb^2 = 5395.234841 \\\\\n\n\nb = 73.45\\\\\n\n\n\n\\textsf{By Sine Rule,}\\\\\n\n\n\\frac{32}{\\sin{C}} = \\frac{73.45}{\\sin{140\\degree}}\\\\\n\n\n\n\\sin{C} = \\frac{32\\sin{140\\degree}}{73.45}\\\\\n\n\n\\sin{C} = 0.2800\\\\\n\nC = 16.26\\degree\\\\\n\n\\textsf{The direction of the resultant}\\\\\\textsf{vector is measured from}\\hspace{0.1cm}0\\degree\\hspace{0.1cm} \\textsf{east}\\\\\\textsf{to the resultant, this angle is} \\hspace{0.1cm} \\theta - 90\\degree,\\\\\\hspace{0.1cm} 90\\degree \\textsf{is the total angle in}\\\\\\textsf{ the first quadrant.}\\\\\n\n\\therefore\\theta - 90\\degree = C + \\phi\\\\\n\n\\phi = 50\\degree \\hspace{0.1cm} \\{\\textsf{Alternate angles are equal}\\}\\\\\n\n\\therefore\\textsf{The direction of the car's}\\\\\\textsf{resultant vector is}\\hspace{0.1cm} 50\\degree + 16.26 \\degree = 66.26\\degree \\hspace{0.1cm}\\textsf{south of east}"
Comments
Leave a comment