Sketch of the scenario above;
We find final latitude and final longitude
Final latitude
Apply the formula
"Distance = \\frac{D. Lat}{cos C}" And hence
"D. Lat = Distance \u00d7 cosC"
"= 500 miles \u00d7 cos(50\u00b0)"
"= 321.39'"
"= 5\u00b021.39' (N)"
Therefore, "D. Lat = 5\u00b021.39' (N)"
Now,
Final latitude = Initial latitude - D. Lat
"= 40\u00b0 25.00' (S) - 5\u00b0 21.39' (N) = 35\u00b0 03.61' (S)"
Final latitude "= 35\u00b0 03.61' (S)"
Final longitude
Here, we apply the formula;
"Departure= D. Lat. \u00d7tanC"
"= 321.39' \u00d7 tan(50\u00b0)"
"=383.02'"
Now finding;
Mean Latitude "(Lat_m) = 40\u00b025' - \\frac{5\u00b0 21.39'}{2} = 37\u00b0 44.31'"
Now finding
"D. Long. = \\frac{Dep.}{cos(Lat_m)}"
"= \\frac{383.02}{cos(37\u00b0 44.31')}"
"=484.34'"
"=8\u00b0 04.34' (E)"
Now final longitude = 360° 00.00' - (Initial Longitude + D. Long.)
"=360\u00b0 00.00' - (175\u00b0 50.00' (E) + 8\u00b0 04.34' (E))"
"=360\u00b0 00.00' - 183\u00b0 54.34'"
"= 176\u00b0 05.66' (W)"
Now,
The Final Position is "35\u00b0 03.61' (S) 176\u00b0 05.66' (W)"
Comments
Leave a comment