Answer to Question #136179 in Trigonometry for jay

Question #136179
A vessel steams a course 050°T, distance 500 miles, from position 40°25 ́S 175°50 ́E. Find a final position.
1
Expert's answer
2020-10-01T17:31:03-0400

Sketch of the scenario above;




We find final latitude and final longitude


Final latitude

Apply the formula


Distance=D.LatcosCDistance = \frac{D. Lat}{cos C} And hence


D.Lat=Distance×cosCD. Lat = Distance × cosC


=500miles×cos(50°)= 500 miles × cos(50°)


=321.39= 321.39'


=5°21.39(N)= 5°21.39' (N)


Therefore, D.Lat=5°21.39(N)D. Lat = 5°21.39' (N)


Now,

Final latitude = Initial latitude - D. Lat


=40°25.00(S)5°21.39(N)=35°03.61(S)= 40° 25.00' (S) - 5° 21.39' (N) = 35° 03.61' (S)


Final latitude =35°03.61(S)= 35° 03.61' (S)


Final longitude

Here, we apply the formula;

Departure=D.Lat.×tanCDeparture= D. Lat. ×tanC


=321.39×tan(50°)= 321.39' × tan(50°)


=383.02=383.02'

Now finding;


Mean Latitude (Latm)=40°255°21.392=37°44.31(Lat_m) = 40°25' - \frac{5° 21.39'}{2} = 37° 44.31'


Now finding


D.Long.=Dep.cos(Latm)D. Long. = \frac{Dep.}{cos(Lat_m)}


=383.02cos(37°44.31)= \frac{383.02}{cos(37° 44.31')}


=484.34=484.34'


=8°04.34(E)=8° 04.34' (E)


Now final longitude = 360° 00.00' - (Initial Longitude + D. Long.)


=360°00.00(175°50.00(E)+8°04.34(E))=360° 00.00' - (175° 50.00' (E) + 8° 04.34' (E))


=360°00.00183°54.34=360° 00.00' - 183° 54.34'


=176°05.66(W)= 176° 05.66' (W)

Now,


The Final Position is 35°03.61(S)176°05.66(W)35° 03.61' (S) 176° 05.66' (W)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment