Two quantities a and b are said to be in the golden ratio φ if
a + b a = a b = φ \frac{a+b}{a}=\frac{a}{b}=\varphi a a + b = b a = φ
One method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting inb a = 1 φ , \frac{b}{a}=\frac{1}{\varphi}, a b = φ 1 ,
a + b a = a a + b a = 1 + b a = 1 + 1 φ {\frac {a+b}{a}}={\frac {a}{a}}+{\frac {b}{a}}=1+{\frac {b}{a}}=1+{\frac {1}{\varphi }} a a + b = a a + a b = 1 + a b = 1 + φ 1 b/a = 1/φ ,
1 + 1 φ = φ 1+{\frac {1}{\varphi }}=\varphi 1 + φ 1 = φ
φ + 1 = φ 2 \varphi +1=\varphi ^{2} φ + 1 = φ 2
φ 2 − φ − 1 = 0. {\varphi }^{2}-\varphi -1=0. φ 2 − φ − 1 = 0.
Using the quadratic formula, two solutions are obtained:
x = − b ± b 2 − 4 a c 2 a x={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}} x = 2 a − b ± b 2 − 4 a c
1 + 5 2 = 1.618 033 988 749 894 848 204 586 834 365 … {\frac {1+{\sqrt {5}}}{2}}=1.618\,033\,988\,749\,894\,848\,204\,586\,834\,365\dots 2 1 + 5 = 1.618 033 988 749 894 848 204 586 834 365 …
and
1 − 5 2 = − 0.618 033 988 7 … {\frac {1-{\sqrt {5}}}{2}}=-0.618\,033\,988\,7\dots 2 1 − 5 = − 0.618 033 988 7 …
Because φ is the ratio between positive quantities, φ is necessarily positive:
φ = 1 + 5 2 = 1.618 033 988 749 894 848 204 586 834 365 … \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.618\,033\,988\,749\,894\,848\,204\,586\,834\,365\dots φ = 2 1 + 5 = 1.618 033 988 749 894 848 204 586 834 365 …
Comments