We'll use the fundamental trigonometric identities:
sin2θ+cos2θ=1,hence 1−cos2θ=sin2θ.
1+cot2θ=csc2θ,
and cotθ=sinθcosθ.
Now we can modify the expression for x:
x=1−cos2θcos2θ+2csc2θ=sin2θcos2θ+2csc2θ=cot2θ+2(1+cot2θ)=
=cot2θ+2+2cot2θ=3cot2θ+2=23(2cot2θ)+2=23y+2.
Hence
x=23y+2,
2x=3y+4,
3y=2x−4,
y=32x−4.
Answer. y=32x−4.
Comments
Doubt relieved.. This platform is helpful.