We'll use the fundamental trigonometric identities:
"sin^2 \\theta +cos^2 \\theta =1, \\textrm{hence } 1-cos^2 \\theta = sin^2 \\theta."
"1+cot^2 \\theta = csc^2 \\theta,"
and "cot \\theta =\\frac{cos \\theta}{sin \\theta}."
Now we can modify the expression for x:
"x= \\frac{cos^2 \\theta }{1-cos^2\\theta} + 2csc^2\\theta=\\frac{cos^2 \\theta }{sin^2\\theta} + 2csc^2\\theta=\ncot^2 \\theta+2(1+cot^2 \\theta)="
"=cot^2 \\theta+2+2cot^2 \\theta=3 cot^2 \\theta +2=\\frac{3}{2}(2cot^2 \\theta)+2=\\frac{3}{2}y+2."
Hence
"x=\\frac{3}{2}y+2,"
"2x=3y+4,"
"3y=2x-4,"
"y=\\frac{2x-4}{3}."
Answer. "y=\\frac{2x-4}{3}."
Comments
Doubt relieved.. This platform is helpful.
Leave a comment