Question #133334
If x= cos^2 tetha /(1-cos^2teta) + 2csc^2teta and y = 2cot^2 teta, express y in terms of x
1
Expert's answer
2020-09-20T17:57:17-0400

We'll use the fundamental trigonometric identities:

sin2θ+cos2θ=1,hence 1cos2θ=sin2θ.sin^2 \theta +cos^2 \theta =1, \textrm{hence } 1-cos^2 \theta = sin^2 \theta.

1+cot2θ=csc2θ,1+cot^2 \theta = csc^2 \theta,

and cotθ=cosθsinθ.cot \theta =\frac{cos \theta}{sin \theta}.

Now we can modify the expression for x:

x=cos2θ1cos2θ+2csc2θ=cos2θsin2θ+2csc2θ=cot2θ+2(1+cot2θ)=x= \frac{cos^2 \theta }{1-cos^2\theta} + 2csc^2\theta=\frac{cos^2 \theta }{sin^2\theta} + 2csc^2\theta= cot^2 \theta+2(1+cot^2 \theta)=

=cot2θ+2+2cot2θ=3cot2θ+2=32(2cot2θ)+2=32y+2.=cot^2 \theta+2+2cot^2 \theta=3 cot^2 \theta +2=\frac{3}{2}(2cot^2 \theta)+2=\frac{3}{2}y+2.

Hence

x=32y+2,x=\frac{3}{2}y+2,

2x=3y+4,2x=3y+4,

3y=2x4,3y=2x-4,

y=2x43.y=\frac{2x-4}{3}.


Answer. y=2x43.y=\frac{2x-4}{3}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Ghaggai
01.08.21, 13:31

Doubt relieved.. This platform is helpful.

LATEST TUTORIALS
APPROVED BY CLIENTS