Question #297478

Vector A=2ti+tj-t^3k and B=sinti+costj evaluate

A..d/dt(A.B)

B..d/dt(A.A)

C..d/dt(A×B)

D..show that d/dt(A×A) is equal to zero.


1
Expert's answer
2022-02-14T18:33:30-0500

A.


AB=2tsint+tcostA\cdot B=2t\sin t+t\cos t

ddt(AB)=2sint+2tcost+costtsint\dfrac{d}{dt}(A\cdot B)=2\sin t+2t\cos t+\cos t-t\sin t

B.



AA=4t2+t2=5t2A\cdot A=4t^2+t^2=5t^2

ddt(AA)=10t\dfrac{d}{dt}(A\cdot A)=10t

C.


A×B=ijk2ttt3sintcost0A\times B=\begin{vmatrix} i & j & k \\ 2t & t & -t^3 \\ \sin t & \cos t & 0 \\ \end{vmatrix}

=i(0+t3cost)j(0+t3sint)+k(2tcosttsint)=i(0+t^3\cos t)-j(0+t^3\sin t)+k(2t\cos t-t\sin t)

ddt(A×B)=(3t2costt3sint)i(3t2sint+t3cost)j\dfrac{d}{dt}(A\times B)=(3t^2\cos t-t^3\sin t)i-(3t^2\sin t+t^3\cos t)j

+(2cost2tsintsinttcost)k+(2\cos t-2t\sin t-\sin t-t\cos t)k

D.


A×A=ijk2ttt32ttt3A\times A=\begin{vmatrix} i & j & k \\ 2t & t & -t^3 \\ 2t & t & -t^3 \\ \end{vmatrix}

=i(t4+t4)j(2t4+2t4)+k(2t22t2)=0=i(-t^4+t^4)-j(-2t^4+2t^4)+k(2t^2-2t^2)=0

ddt(A×A)=0\dfrac{d}{dt}(A\times A)=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS