Question #91970
A number X is selected at random from the unit interval. Let the events A and B be:
A = “X differs from 1/2 by more than 1/4”
B = “1 - X is less than 1/2.”
Find the events A∩B, A^c∩B, A∪B
1
Expert's answer
2019-07-24T13:46:48-0400

Set A =


A={x1/2>1/4}=A=\{|x-1/2|>1/4\}=



{x1/2>1/4 or x1/2<1/4}=\{x-1/2>1/4\ or\ x-1/2<-1/4\}=

{x>3/4 or x<1/4}=\{x>3/4\ or\ x<1/4\}=


(0,14)(34,1)(0,\frac{1}{4})\cup (\frac{3}{4},1)

Set B =


B={1x<12}={x>12}=(12,1)B=\{1-x<\frac{1}{2}\}=\{x>\frac{1}{2}\}=(\frac{1}{2},1)

Set A∩B =

AB=((0,14)(34,1))(12,1)=A\cap B=((0,\frac{1}{4})\cup (\frac{3}{4},1))\cap(\frac{1}{2},1)=

((0,14)(12,1))((34,1)(12,1))=((0,\frac{1}{4})\cap (\frac{1}{2},1))\cup((\frac{3}{4},1)\cap (\frac{1}{2},1))=

(34,1)(\frac{3}{4},1)

Set Ac =


Ac=((0,14)(34,1))cA^c=((0,\frac{1}{4})\cup (\frac{3}{4},1))^c

[14,34][\frac{1}{4},\frac{3}{4}]

Set Ac∩B =

[14,34](12,1)=(12,34][\frac{1}{4},\frac{3}{4}]\cap (\frac{1}{2},1)=(\frac{1}{2},\frac{3}{4}]

Set A∪B =


((0,14)(34,1))(12,1)=((0,\frac{1}{4})\cup (\frac{3}{4},1))\cup (\frac{1}{2},1)=

(0,14)((34,1)(12,1))=(0,\frac{1}{4})\cup((\frac{3}{4},1)\cup (\frac{1}{2},1))=

(0,14)(12,1)(0,\frac{1}{4})\cup(\frac{1}{2},1)

P(A∩B) = 1-3/4=1/4, P(Ac∩B) = 3/4-1/2 = 1/4, p(A∪B) = (1/4 - 0) + (1 - 1/2) = 3/4.

Answer:A∩B = (3/4, 1) , Ac∩B = (1/2, 3/4], A∪B = (0, 1/4)∪(1/2, 1).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS