The probability distribution of the Poisson random variable X, representing the number of outcomes occurring
in a given time interval or specified region denoted by t, is
Use the Poisson distribution with
i. No car will arrive
ii. At least two cars will arrive
"=1-({e^{-2}(2)^0 \\over {0!}}+{e^{-2}(2)^1 \\over {1!}})=1-e^{-2}-2e^{-2}=1-3e^{-2}\\approx0.593994"
iii. At the most 3 cars will arrive
"={e^{-2}(2)^0 \\over {0!}}+{e^{-2}(2)^1 \\over {1!}}+{e^{-2}(2)^2 \\over {2!}}+{e^{-2}(2)^3 \\over {3!}}="
"={19 \\over 3}e^{-2}\\approx0.857123"
iv. Between 1 and 3 cars will arrive
"={e^{-2}(2)^1 \\over {1!}}+{e^{-2}(2)^2 \\over {2!}}+{e^{-2}(2)^3 \\over {3!}}={16 \\over 3}e^{-2}\\approx0.721788"
Comments
Leave a comment