For a single mean from a normal distribution with known variance, a two-sided, 100(1 – α)% confidence interval is calculated by
"\\bar{X}-z_{\\alpha\/2}*{\\sigma \\over \\sqrt{n}}\\le\\mu\\le\\bar{X}+z_{\\alpha\/2}*{\\sigma \\over \\sqrt{n}}" For a 95% confidence interval for μ
"z_{\\alpha\/2}=z_{0.025}=1.96" We have that
"\\bar{X}=60, \\sigma^2=25, n" Then
"60-1.96*{\\sqrt{25} \\over \\sqrt{n}}\\le\\mu\\le60+1.96*{\\sqrt{25} \\over \\sqrt{n}}"
"60-{9.8 \\over \\sqrt{n}}\\le\\mu\\le60+{9.8 \\over \\sqrt{n}}"
"95\\% CI\\ [60-{9.8 \\over \\sqrt{n}}, 60+{9.8 \\over \\sqrt{n}}]"
If n=16
"60-1.96*{\\sqrt{25} \\over \\sqrt{16}}\\le\\mu\\le60+1.96*{\\sqrt{25} \\over \\sqrt{16}}"
"57.55\\le\\mu\\le62.45"
"95\\% CI\\ [57.55, 62.45]"
Comments
Leave a comment