The binomial distribution b(x; n, p)
P(X=x)=(xn)px(1−p)n−xn=100,p=0.2 i) at most 15 chips will be defective
P(X≤15)=0≤i≤15∑P(X=i)
P(X≤15)=0!(100−0)!100!0.20(1−0.2)100−0+1!(100−1)!100!0.21(1−0.2)100−1+
+2!(100−2)!100!0.22(1−0.2)100−2+3!(100−3)!100!0.23(1−0.2)100−3+
+4!(100−4)!100!0.24(1−0.2)100−4+5!(100−5)!100!0.25(1−0.2)100−5+
+6!(100−6)!100!0.26(1−0.2)100−6+7!(100−7)!100!0.27(1−0.2)100−7+
+8!(100−8)!100!0.28(1−0.2)100−8+9!(100−9)!100!0.29(1−0.2)100−9+
=15!(100−15)!100!0.215(1−0.2)100−15+16!(100−16)!100!0.216(1−0.2)100−16+
+12!(100−12)!100!0.212(1−0.2)100−12+13!(100−13)!100!0.213(1−0.2)100−13+
+14!(100−14)!100!0.214(1−0.2)100−14+15!(100−15)!100!0.215(1−0.2)100−15≈
≈0.1285 ii) the number of defectives will be between 15 and 25.
P(15≤X≤25)=15≤i≤25∑P(X=i)
P(15≤X≤25)=
=15!(100−15)!100!0.215(1−0.2)100−15+16!(100−16)!100!0.216(1−0.2)100−16+
+17!(100−17)!100!0.217(1−0.2)100−17+18!(100−18)!100!0.218(1−0.2)100−18+
+19!(100−19)!100!0.219(1−0.2)100−19+20!(100−20)!100!0.220(1−0.2)100−20+
+21!(100−21)!100!0.221(1−0.2)100−21+22!(100−22)!100!0.222(1−0.2)100−22+
+23!(100−23)!100!0.223(1−0.2)100−23+24!(100−24)!100!0.224(1−0.2)100−24+
+25!(100−25)!100!0.225(1−0.2)100−25≈0.8321
Comments