Question #86834
If 20% of the memory chips made in a certain plant are defective, find the probability
that in a lot of 100 randomly chosen chips for inspection
i) at most 15 chips will be defective,
ii) the number of defectives will be between 15 and 25.
1
Expert's answer
2019-03-26T12:31:31-0400

The binomial distribution b(x; n, p)


P(X=x)=(nx)px(1p)nxP(X=x)=\dbinom{n}{x}p^x(1-p)^{n-x}n=100,p=0.2n=100, p=0.2

i) at most 15 chips will be defective


P(X15)=0i15P(X=i)P(X\le15)=\sum_{\mathclap{0\le i\le 15}} P(X=i)

P(X15)=100!0!(1000)!0.20(10.2)1000+100!1!(1001)!0.21(10.2)1001+P(X\le15)={100! \over {0!(100-0)!}}0.2^0(1-0.2)^{100-0}+{100! \over {1!(100-1)!}}0.2^1(1-0.2)^{100-1}+

+100!2!(1002)!0.22(10.2)1002+100!3!(1003)!0.23(10.2)1003++{100! \over {2!(100-2)!}}0.2^2(1-0.2)^{100-2}+{100! \over {3!(100-3)!}}0.2^3(1-0.2)^{100-3}+

+100!4!(1004)!0.24(10.2)1004+100!5!(1005)!0.25(10.2)1005++{100! \over {4!(100-4)!}}0.2^4(1-0.2)^{100-4}+{100! \over {5!(100-5)!}}0.2^5(1-0.2)^{100-5}+

+100!6!(1006)!0.26(10.2)1006+100!7!(1007)!0.27(10.2)1007++{100! \over {6!(100-6)!}}0.2^6(1-0.2)^{100-6}+{100! \over {7!(100-7)!}}0.2^7(1-0.2)^{100-7}+

+100!8!(1008)!0.28(10.2)1008+100!9!(1009)!0.29(10.2)1009++{100! \over {8!(100-8)!}}0.2^8(1-0.2)^{100-8}+{100! \over {9!(100-9)!}}0.2^9(1-0.2)^{100-9}+

=100!15!(10015)!0.215(10.2)10015+100!16!(10016)!0.216(10.2)10016+={100! \over {15!(100-15)!}}0.2^{15}(1-0.2)^{100-15}+{100! \over {16!(100-16)!}}0.2^{16}(1-0.2)^{100-16}+

+100!12!(10012)!0.212(10.2)10012+100!13!(10013)!0.213(10.2)10013++{100! \over {12!(100-12)!}}0.2^{12}(1-0.2)^{100-12}+{100! \over {13!(100-13)!}}0.2^{13}(1-0.2)^{100-13}+

+100!14!(10014)!0.214(10.2)10014+100!15!(10015)!0.215(10.2)10015+{100! \over {14!(100-14)!}}0.2^{14}(1-0.2)^{100-14}+{100! \over {15!(100-15)!}}0.2^{15}(1-0.2)^{100-15}\approx

0.1285\approx0.1285

ii) the number of defectives will be between 15 and 25.


P(15X25)=15i25P(X=i)P(15 \le X \le25)=\sum_{\mathclap{15\le i\le 25}} P(X=i)

P(15X25)=P(15 \le X \le25)=

=100!15!(10015)!0.215(10.2)10015+100!16!(10016)!0.216(10.2)10016+={100! \over {15!(100-15)!}}0.2^{15}(1-0.2)^{100-15}+{100! \over {16!(100-16)!}}0.2^{16}(1-0.2)^{100-16}+

+100!17!(10017)!0.217(10.2)10017+100!18!(10018)!0.218(10.2)10018++{100! \over {17!(100-17)!}}0.2^{17}(1-0.2)^{100-17}+{100! \over {18!(100-18)!}}0.2^{18}(1-0.2)^{100-18}+

+100!19!(10019)!0.219(10.2)10019+100!20!(10020)!0.220(10.2)10020++{100! \over {19!(100-19)!}}0.2^{19}(1-0.2)^{100-19}+{100! \over {20!(100-20)!}}0.2^{20}(1-0.2)^{100-20}+

+100!21!(10021)!0.221(10.2)10021+100!22!(10022)!0.222(10.2)10022++{100! \over {21!(100-21)!}}0.2^{21}(1-0.2)^{100-21}+{100! \over {22!(100-22)!}}0.2^{22}(1-0.2)^{100-22}+

+100!23!(10023)!0.223(10.2)10023+100!24!(10024)!0.224(10.2)10024++{100! \over {23!(100-23)!}}0.2^{23}(1-0.2)^{100-23}+{100! \over {24!(100-24)!}}0.2^{24}(1-0.2)^{100-24}+

+100!25!(10025)!0.225(10.2)100250.8321+{100! \over {25!(100-25)!}}0.2^{25}(1-0.2)^{100-25}\approx0.8321


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS