The binomial distribution b(x; n, p)
i) at most 15 chips will be defective
"P(X\\le15)={100! \\over {0!(100-0)!}}0.2^0(1-0.2)^{100-0}+{100! \\over {1!(100-1)!}}0.2^1(1-0.2)^{100-1}+"
"+{100! \\over {2!(100-2)!}}0.2^2(1-0.2)^{100-2}+{100! \\over {3!(100-3)!}}0.2^3(1-0.2)^{100-3}+"
"+{100! \\over {4!(100-4)!}}0.2^4(1-0.2)^{100-4}+{100! \\over {5!(100-5)!}}0.2^5(1-0.2)^{100-5}+"
"+{100! \\over {6!(100-6)!}}0.2^6(1-0.2)^{100-6}+{100! \\over {7!(100-7)!}}0.2^7(1-0.2)^{100-7}+"
"+{100! \\over {8!(100-8)!}}0.2^8(1-0.2)^{100-8}+{100! \\over {9!(100-9)!}}0.2^9(1-0.2)^{100-9}+"
"={100! \\over {15!(100-15)!}}0.2^{15}(1-0.2)^{100-15}+{100! \\over {16!(100-16)!}}0.2^{16}(1-0.2)^{100-16}+"
"+{100! \\over {12!(100-12)!}}0.2^{12}(1-0.2)^{100-12}+{100! \\over {13!(100-13)!}}0.2^{13}(1-0.2)^{100-13}+"
"+{100! \\over {14!(100-14)!}}0.2^{14}(1-0.2)^{100-14}+{100! \\over {15!(100-15)!}}0.2^{15}(1-0.2)^{100-15}\\approx"
"\\approx0.1285"
ii) the number of defectives will be between 15 and 25.
"P(15 \\le X \\le25)="
"={100! \\over {15!(100-15)!}}0.2^{15}(1-0.2)^{100-15}+{100! \\over {16!(100-16)!}}0.2^{16}(1-0.2)^{100-16}+"
"+{100! \\over {17!(100-17)!}}0.2^{17}(1-0.2)^{100-17}+{100! \\over {18!(100-18)!}}0.2^{18}(1-0.2)^{100-18}+"
"+{100! \\over {19!(100-19)!}}0.2^{19}(1-0.2)^{100-19}+{100! \\over {20!(100-20)!}}0.2^{20}(1-0.2)^{100-20}+"
"+{100! \\over {21!(100-21)!}}0.2^{21}(1-0.2)^{100-21}+{100! \\over {22!(100-22)!}}0.2^{22}(1-0.2)^{100-22}+"
"+{100! \\over {23!(100-23)!}}0.2^{23}(1-0.2)^{100-23}+{100! \\over {24!(100-24)!}}0.2^{24}(1-0.2)^{100-24}+"
"+{100! \\over {25!(100-25)!}}0.2^{25}(1-0.2)^{100-25}\\approx0.8321"
Comments
Leave a comment