Given the following data: r12 = 0' 8 , r13 = 0.6 and r23= 0.4 then find
(i) r12.3
(ii) r13.2
(iii) r23.1
(iv) R1.23
The formula for calculating the partial correlation coefficient between x1 and x2 when controlling x3:
"r_{12.3}=\\frac{r_{12}-r_{13}\\cdot r_{23}}{\\sqrt{1-r_{13}^2}\\cdot \\sqrt{1-r_{23}^2}}" .
So we have:
(i)
"r_{12.3}=\\frac{r_{12}-r_{13}\\cdot r_{23}}{\\sqrt{1-r_{13}^2}\\cdot \\sqrt{1-r_{23}^2}}=\\frac{0.8-0.6\\cdot 0.4}{\\sqrt{1-0.6^2}\\cdot \\sqrt{1-0.4^2}}="
"=\\frac{0.8-0.24}{\\sqrt{1-0.36}\\cdot \\sqrt{1-0.16}} \\approx \\frac{0.56}{0.8\\cdot 0.9165}\\approx 0.76"
(ii)
"r_{13.2}=\\frac{r_{13}-r_{12}\\cdot r_{23}}{\\sqrt{1-r_{12}^2}\\cdot \\sqrt{1-r_{23}^2}}=\\frac{0.6-0.8\\cdot 0.4}{\\sqrt{1-0.8^2}\\cdot \\sqrt{1-0.4^2}}="
"=\\frac{0.6-0.32}{\\sqrt{1-0.64}\\cdot \\sqrt{1-0.16}} \\approx \\frac{0.28}{0.6\\cdot 0.9165}\\approx 0.51"
(iii)
"r_{23.1}=\\frac{r_{23}-r_{12}\\cdot r_{13}}{\\sqrt{1-r_{12}^2}\\cdot \\sqrt{1-r_{13}^2}}=\\frac{0.4-0.8\\cdot 0.6}{\\sqrt{1-0.8^2}\\cdot \\sqrt{1-0.6^2}}="
"=\\frac{0.4-0.48}{\\sqrt{1-0.64}\\cdot \\sqrt{1-0.36}} =-\\frac{0.08}{0.6\\cdot 0.8}\\approx -0.17"
(iv)
The multiple correlation coefficient:
"R_{1.23}=\\sqrt{\\frac{r_{12}^2+r_{13}^2-2r_{12}r_{13}r_{23}}{1-r_{23}^2}}=\\sqrt{\\frac{0.8^2+0.6^2-2\\cdot 0.8\\cdot 0.6\\cdot 0.4}{1-0.4^2}}="
"=\\sqrt{\\frac{0.64+0.36-0.384}{1-0.16}}=\\sqrt{\\frac{0.616}{0.84}}\\approx 0.86"
Answer: (i) 0.76 (ii) 0.51 (iii) -0.17 (iv) 0.86
Comments
Leave a comment