Answer to Question #349504 in Statistics and Probability for Aashna

Question #349504

If a finite population has four elements: 6, 1, 3, 2.

(a) How many different samples of size n = 2 can be selected from this population if you sample without replacement?

(b) List all possible samples of size n = 2.

(c) Compute the sample mean for each of the samples given in part b.

(d) Find the sampling distribution of x.

(e) Compute standard error.

(f) If all four population values are equally likely, calculate the value of the population mean μ . Do any of the samples listed in part (b) produce a value of x exactly equal to μ ?


1
Expert's answer
2022-06-10T11:15:28-0400

We have population values 1,2,3,6, population size N=4 and sample size n=2.

(a) Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=4C2=6.^{N}C_n=^{4}C_2=6.


(b)


noSample11,221,331,642,352,663,6\def\arraystretch{1.5} \begin{array}{c:c:c:c} no & Sample \\ \hline 1 & 1,2 \\ \hdashline 2 & 1,3 \\ \hdashline 3 & 1,6 \\ \hdashline 4 & 2,3 \\ \hdashline 5 & 2,6 \\ \hdashline 6 & 3,6 \\ \hdashline \end{array}



(c)


noSampleSamplemean (xˉ)11,23/221,34/231,67/242,35/252,68/263,69/2\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 1,2 & 3/2 \\ \hdashline 2 & 1,3 & 4/2 \\ \hdashline 3 & 1,6 & 7/2 \\ \hdashline 4 & 2,3 & 5/2\\ \hdashline 5 & 2,6 & 8/2 \\ \hdashline 6 & 3,6 & 9/2 \\ \hdashline \end{array}



(d)


Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)3/21/63/129/244/21/64/1216/245/21/65/1225/247/21/67/1249/248/21/68/1264/249/21/69/1281/24\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 3/2 & 1/6 & 3/12 & 9/24 \\ \hdashline 4/2 & 1/6 & 4/12 & 16/24 \\ \hdashline 5/2 & 1/6 & 5/12 & 25/24 \\ \hdashline 7/2 & 1/6 & 7/12 & 49/24 \\ \hdashline 8/2 & 1/6 & 8/12 & 64/24 \\ \hdashline 9/2 & 1/6 & 9/12 & 81/24 \\ \hdashline \end{array}



Mean of population (μ)(\mu) = 1+2+3+64=3\dfrac{1+2+3+6}{4}=3

Variance of population 


σ2=Σ(xixˉ)2n=4+1+0+94=3.5\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{4+1+0+9}{4}=3.5σ=σ2=3.51.8708\sigma=\sqrt{\sigma^2}=\sqrt{3.5}\approx1.8708


Mean of sampling distribution 


μXˉ=E(Xˉ)=Xˉif(Xˉi)=3612=3=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{36}{12}=3=\mu


The variance of sampling distribution 


Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=24424(3)2=76=σ2n(NnN1)=\dfrac{244}{24}-(3)^2=\dfrac{7}{6}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})



(e)


σXˉ=σXˉ2=761.0801\sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\sqrt{\dfrac{7}{6}}\approx1.0801

(f)


μ=E(X)=1(14)+2(14)+3(14)+6(14)=3\mu=E(X)=1(\dfrac{1}{4})+2(\dfrac{1}{4})+3(\dfrac{1}{4})+6(\dfrac{1}{4})=3

 No sample produces a value of xˉ\bar{x} exactly equal to μ.\mu.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment