Suppose the Acme Drug Company develops a new drug, designed to prevent colds. The company
states that the drug is equally effective for men and women. To test this claim, they choose a
simple random sample of 110 women and 190 men from a population of 100,000 volunteers.
At the end of the study, 28% of the women caught a cold; and 61% of the men caught a cold.
Based on these findings, can we reject the company's claim that the drug is equally effective for
men and women? Use a 0.05 level of significance.
The value of the pooled proportion is computed as
The following null and alternative hypotheses need to be tested:
This corresponds to a two-tailed test, and a z-test for two population proportions will be used.
Based on the information provided, the significance level is and the critical value for a two-tailed test is
The rejection region for this two-tailed test is
The z-statistic is computed as follows:
Since it is observed that it is then concluded that the null hypothesis is rejected.
Using the P-value approach:
The p-value is and since it is concluded that the null hypothesis is rejected.
Therefore, there is enough evidence to claim that the population proportion is different than at the significance level.
Comments