Question #349267

Solve r and interpret the result


X 2,4,6,7,10


Y 8,10,12,6,16



In the given table on the below, solve for Pearson r and interpret the result


X 80,84,86,87,89,90,91,93,94,96


Y 78,83,80,84,89,90,88,91,93,96

1
Expert's answer
2022-06-13T18:05:24-0400

a) In order to compute the regression coefficients, the following table needs to be used:


XYXYX2Y2281646441040161006127236144764249361016160100256Sum=2952330205600\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X & Y & XY & X^2 & Y^2 \\ \hline & 2 & 8 & 16 & 4 & 64 \\ \hdashline & 4 & 10 & 40 & 16 & 100 \\ \hdashline & 6 & 12 & 72 & 36 & 144 \\ \hdashline & 7 & 6 & 42 & 49 & 36 \\ \hdashline & 10 & 16 & 160 & 100 & 256 \\ \hdashline Sum= & 29 & 52 & 330 & 205 & 600 \\ \hdashline \end{array}




Xˉ=1niXi=295=5.8\bar{X}=\dfrac{1}{n}\sum _{i}X_i=\dfrac{29}{5}=5.8




Yˉ=1niYi=525=10.4\bar{Y}=\dfrac{1}{n}\sum _{i}Y_i=\dfrac{52}{5}=10.4




SSXX=iXi21n(iXi)2SS_{XX}=\sum_iX_i^2-\dfrac{1}{n}(\sum _{i}X_i)^2=2052925=36.8=205-\dfrac{29^2}{5}=36.8




SSYY=iYi21n(iYi)2SS_{YY}=\sum_iY_i^2-\dfrac{1}{n}(\sum _{i}Y_i)^2=600(52)25=59.2=600-\dfrac{(52)^2}{5}=59.2




SSXY=iXiYi1n(iXi)(iYi)SS_{XY}=\sum_iX_iY_i-\dfrac{1}{n}(\sum _{i}X_i)(\sum _{i}Y_i)=33029(52)5=28.4=330-\dfrac{29(52)}{5}=28.4




r=SSXYSSXXSSYY=28.436.8(59.2)r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}}=\dfrac{28.4}{\sqrt{36.8(59.2)}}




=0.608462=0.608462




0.4<r<0.70.4<r<0.7

Moderate positive correlation



m=slope=SSXYSSXX=28.436.8=0.7717m=slope=\dfrac{SS_{XY}}{SS_{XX}}=\dfrac{28.4}{36.8}=0.7717n=YˉmXˉ=10.428.436.8(5.8)=5.9239n=\bar{Y}-m\bar{X}=10.4-\dfrac{28.4}{36.8}(5.8)=5.9239


The regression equation is:


y=5.9239+0.7717xy=5.9239+0.7717x



(b) In order to compute the regression coefficients, the following table needs to be used:


XYXYX2Y28078624064006084848369727056688986806880739664008784730875697056898979217921792190908100810081009188800882817744939184638649828194938742883686499696921692169216Sum=890872778507942476340\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X & Y & XY & X^2 & Y^2 \\ \hline & 80 & 78 & 6240 & 6400 & 6084 \\ \hdashline & 84 & 83 & 6972 & 7056 & 6889 \\ \hdashline & 86 & 80 & 6880 & 7396 & 6400 \\ \hdashline & 87 & 84 & 7308 & 7569 & 7056 \\ \hdashline & 89 & 89 & 7921 & 7921 & 7921 \\ \hdashline & 90 & 90 & 8100 & 8100 & 8100 \\ \hdashline & 91 & 88 & 8008 & 8281 & 7744 \\ \hdashline & 93 & 91 & 8463 & 8649 & 8281 \\ \hdashline & 94 & 93 & 8742 & 8836 & 8649 \\ \hdashline & 96 & 96& 9216 & 9216 & 9216 \\ \hdashline Sum= & 890 & 872 & 77850 & 79424 & 76340 \\ \end{array}




Xˉ=1niXi=89010=89\bar{X}=\dfrac{1}{n}\sum _{i}X_i=\dfrac{890}{10}=89




Yˉ=1niYi=87210=87.2\bar{Y}=\dfrac{1}{n}\sum _{i}Y_i=\dfrac{872}{10}=87.2




SSXX=iXi21n(iXi)2SS_{XX}=\sum_iX_i^2-\dfrac{1}{n}(\sum _{i}X_i)^2=79424890210=214=79424-\dfrac{890^2}{10}=214




SSYY=iYi21n(iYi)2SS_{YY}=\sum_iY_i^2-\dfrac{1}{n}(\sum _{i}Y_i)^2=76340(872)210=301.6=76340-\dfrac{(872)^2}{10}=301.6




SSXY=iXiYi1n(iXi)(iYi)SS_{XY}=\sum_iX_iY_i-\dfrac{1}{n}(\sum _{i}X_i)(\sum _{i}Y_i)=77850890(872)10=242=77850-\dfrac{890(872)}{10}=242




r=SSXYSSXXSSYY=242214(301.6)r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}}=\dfrac{242}{\sqrt{214(301.6)}}




=0.952561=0.952561


Strong positive correlation



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS