Question #349257

2. Consider the population consisting of the values (1, 2, 8). List all possible samples of size 2 which can be drawn without replacement from the population. Find the following:




a. Population mean




b. Population variance




c. Population standard deviation




d. Mean of the samples and mean of the sampling distribution of mean




e. Variance of the sampling distribution of means




f. Standard deviation of the sampling distribution of means




1
Expert's answer
2022-06-09T10:52:44-0400

a. We have population values 1,2,8, population size N=3 and sample size n=2.

Mean of population (μ)(\mu) = 1+2+83=113\dfrac{1+2+8}{3}=\dfrac{11}{3}

b.Variance of population 


c.

σ2=Σ(xixˉ)2n=127(64+25+169)=869\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{27}(64+25+169)=\dfrac{86}{9}σ=σ2=8693.0912\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{86}{9}}\approx3.0912


Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=3C2=3.^{N}C_n=^{3}C_2=3.

noSampleSamplemean (xˉ)11,21.521,84.532,85\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 1,2 & 1.5 \\ \hdashline 2 & 1,8 & 4.5 \\ \hdashline 3 & 2,8 & 5 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)1.51/33/69/124.51/39/681/1251/310/6100/12\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 1.5 & 1/3 & 3/6 & 9/12 \\ \hdashline 4.5 & 1/3 & 9/6 & 81/12 \\ \hdashline 5 & 1/3 & 10/6 & 100/12 \\ \end{array}



d. Mean of sampling distribution 


μXˉ=E(Xˉ)=Xˉif(Xˉi)=113=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{11}{3}=\mu



e. The variance of sampling distribution 


Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=19012(113)2=4318=σ2n(NnN1)=\dfrac{190}{12}-(\dfrac{11}{3})^2=\dfrac{43}{18}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})



f.

σXˉ=σXˉ2=43181.5456\sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\sqrt{\dfrac{43}{18}}\approx1.5456

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS