Answer to Question #348297 in Statistics and Probability for Nalyn

Question #348297

List all the possible samples and the corresponding mean

1
Expert's answer
2022-06-06T14:40:05-0400

We have population values 1,2,3,4,5, population size N=5 and sample size n=2.

Mean of population (μ)(\mu) = 1+2+3+4+55=3\dfrac{1+2+3+4+5}{5}=3

Variance of population 


σ2=Σ(xixˉ)2n=4+1+0+1+45=2\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{4+1+0+1+4}{5}=2



Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=5C2=10.^{N}C_n=^{5}C_2=10.

noSampleSamplemean (xˉ)11,23/221,34/231,45/241,56/252,35/262,46/272,57/283,47/293,58/2104,59/2\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 1,2 & 3/2 \\ \hdashline 2 & 1,3 & 4/2 \\ \hdashline 3 & 1,4 & 5/2 \\ \hdashline 4 & 1,5 & 6/2 \\ \hdashline 5 & 2,3 & 5/2 \\ \hdashline 6 & 2,4 & 6/2 \\ \hdashline 7 & 2,5 & 7/2 \\ \hdashline 8 & 3,4 & 7/2 \\ \hdashline 9 & 3,5 & 8/2 \\ \hdashline 10 & 4,5 & 9/2 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)3/21/103/209/404/21/104/2016/405/22/1010/2050/406/22/1012/2072/407/22/1014/2098/408/21/108/2064/409/21/109/2081/40\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 3/2 & 1/10 & 3/20 & 9/40 \\ \hdashline 4/2 & 1/10 & 4/20 & 16/40 \\ \hdashline 5/2 & 2/10 & 10/20 & 50/40 \\ \hdashline 6/2 & 2/10 & 12/20 & 72/40 \\ \hdashline 7/2 & 2/10 & 14/20 & 98/40 \\ \hdashline 8/2 & 1/10 & 8/20 & 64/40 \\ \hdashline 9/2 & 1/10 & 9/20 & 81/40 \\ \hdashline \end{array}


Mean of sampling distribution 


μXˉ=E(Xˉ)=Xˉif(Xˉi)=6020=3=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{60}{20}=3=\mu


The variance of sampling distribution 


Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=39040(3)2=34=σ2n(NnN1)=\dfrac{390}{40}-(3)^2=\dfrac{3}{4}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment