We have population values 9,12,15,18,21, 24, population size N=6 and sample size n=3.
Mean of population ( μ ) (\mu) ( μ ) = 9 + 12 + 15 + 18 + 21 + 24 6 = 16.5 \dfrac{9+12+15+18+21+24}{6}=16.5 6 9 + 12 + 15 + 18 + 21 + 24 = 16.5
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 1 6 ( 56.25 + 20.25 + 2.25 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{6}(56.25+20.25+2.25 σ 2 = n Σ ( x i − x ˉ ) 2 = 6 1 ( 56.25 + 20.25 + 2.25 + 2.25 + 20.25 + 56.25 ) = 26.25 +2.25+20.25+56.25)=26.25 + 2.25 + 20.25 + 56.25 ) = 26.25 σ = σ 2 = 26.25 ≈ 5.1235 \sigma=\sqrt{\sigma^2}=\sqrt{26.25}\approx5.1235 σ = σ 2 = 26.25 ≈ 5.1235 Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is N C n = 6 C 3 = 20. ^{N}C_n=^{6}C_3=20. N C n = 6 C 3 = 20.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 9 , 12 , 15 12 2 9 , 12 , 18 13 3 9 , 12 , 21 14 4 9 , 12 , 24 15 5 9 , 15 , 18 14 6 9 , 15 , 21 15 7 9 , 15 , 24 16 8 9 , 18 , 21 16 9 9 , 18 , 24 17 10 9 , 21 , 24 18 11 12 , 15 , 18 15 12 12 , 15 , 21 16 13 12 , 15 , 24 17 14 12 , 18 , 21 17 15 12 , 18 , 24 18 16 12 , 21 , 24 19 17 15 , 18 , 21 18 18 15 , 18 , 24 19 19 15 , 21 , 24 20 20 18 , 21 , 24 21 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 9,12,15 & 12 \\
\hdashline
2 & 9,12,18 & 13 \\
\hdashline
3 & 9,12,21 & 14 \\
\hdashline
4 & 9,12,24 & 15 \\
\hdashline
5 & 9,15,18 & 14 \\
\hdashline
6 & 9,15,21 & 15 \\
\hdashline
7 & 9,15, 24 & 16 \\
\hdashline
8 & 9,18,21 & 16 \\
\hdashline
9 & 9,18,24 & 17 \\
\hdashline
10 & 9, 21,24 & 18 \\
\hdashline
11 & 12,15,18 & 15 \\
\hdashline
12 & 12, 15,21 & 16 \\
\hdashline
13 & 12, 15, 24 & 17 \\
\hdashline
14 & 12,18,21 & 17 \\
\hdashline
15 & 12,18,24 & 18 \\
\hdashline
16 & 12, 21,24 & 19 \\
\hdashline
17 & 15, 18,21 & 18 \\
\hdashline
18 & 15, 18,24 & 19 \\
\hdashline
19 & 15, 21,24 & 20 \\
\hdashline
20 & 18, 21,24 & 21 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 S am pl e 9 , 12 , 15 9 , 12 , 18 9 , 12 , 21 9 , 12 , 24 9 , 15 , 18 9 , 15 , 21 9 , 15 , 24 9 , 18 , 21 9 , 18 , 24 9 , 21 , 24 12 , 15 , 18 12 , 15 , 21 12 , 15 , 24 12 , 18 , 21 12 , 18 , 24 12 , 21 , 24 15 , 18 , 21 15 , 18 , 24 15 , 21 , 24 18 , 21 , 24 S am pl e m e an ( x ˉ ) 12 13 14 15 14 15 16 16 17 18 15 16 17 17 18 19 18 19 20 21
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 12 1 / 20 12 / 20 144 / 20 13 1 / 20 13 / 20 169 / 20 14 2 / 20 28 / 20 392 / 20 15 3 / 20 45 / 20 675 / 20 16 3 / 20 48 / 20 768 / 20 17 3 / 20 51 / 20 867 / 20 18 3 / 20 54 / 20 972 / 20 19 2 / 20 38 / 20 722 / 20 20 1 / 20 20 / 20 400 / 20 21 1 / 20 21 / 20 441 / 20 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
12 & 1/20 & 12/20 & 144/20 \\
\hdashline
13 & 1/20 & 13/20 & 169/20 \\
\hdashline
14 & 2/20 & 28/20 & 392/20 \\
\hdashline
15 & 3/20 & 45/20 & 675/20 \\
\hdashline
16 & 3/20 & 48/20 & 768/20 \\
\hdashline
17 & 3/20 & 51/20 & 867/20 \\
\hdashline
18 & 3/20 & 54/20 & 972/20 \\
\hdashline
19 & 2/20 & 38/20 & 722/20 \\
\hdashline
20 & 1/20 & 20/20 & 400/20 \\
\hdashline
21 & 1/20 & 21/20 & 441/20 \\
\hdashline
\end{array} X ˉ 12 13 14 15 16 17 18 19 20 21 f ( X ˉ ) 1/20 1/20 2/20 3/20 3/20 3/20 3/20 2/20 1/20 1/20 X ˉ f ( X ˉ ) 12/20 13/20 28/20 45/20 48/20 51/20 54/20 38/20 20/20 21/20 X ˉ 2 f ( X ˉ ) 144/20 169/20 392/20 675/20 768/20 867/20 972/20 722/20 400/20 441/20
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 330 20 = 16.5 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{330}{20}=16.5=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 20 330 = 16.5 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 5550 20 − ( 16.5 ) 2 = 5.25 = σ 2 n ( N − n N − 1 ) =\dfrac{5550}{20}-(16.5)^2=5.25= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 20 5550 − ( 16.5 ) 2 = 5.25 = n σ 2 ( N − 1 N − n ) σ X ˉ = 5.25 ≈ 2.2913 \sigma_{\bar{X}}=\sqrt{5.25}\approx2.2913 σ X ˉ = 5.25 ≈ 2.2913
Comments