Question #348157

A group of students got the following scores in an achievement test:9,12,15,18,21 and 24 . consider the sample of size 3 that can be drawn from this population. Construct a sampling distribution of the resulting means and find the probability




1
Expert's answer
2022-06-07T09:29:22-0400

We have population values 9,12,15,18,21, 24, population size N=6 and sample size n=3.

Mean of population (μ)(\mu) = 9+12+15+18+21+246=16.5\dfrac{9+12+15+18+21+24}{6}=16.5

Variance of population 



σ2=Σ(xixˉ)2n=16(56.25+20.25+2.25\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{6}(56.25+20.25+2.25+2.25+20.25+56.25)=26.25+2.25+20.25+56.25)=26.25σ=σ2=26.255.1235\sigma=\sqrt{\sigma^2}=\sqrt{26.25}\approx5.1235

Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=6C3=20.^{N}C_n=^{6}C_3=20.

noSampleSamplemean (xˉ)19,12,151229,12,181339,12,211449,12,241559,15,181469,15,211579,15,241689,18,211699,18,2417109,21,24181112,15,18151212,15,21161312,15,24171412,18,21171512,18,24181612,21,24191715,18,21181815,18,24191915,21,24202018,21,2421\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 9,12,15 & 12 \\ \hdashline 2 & 9,12,18 & 13 \\ \hdashline 3 & 9,12,21 & 14 \\ \hdashline 4 & 9,12,24 & 15 \\ \hdashline 5 & 9,15,18 & 14 \\ \hdashline 6 & 9,15,21 & 15 \\ \hdashline 7 & 9,15, 24 & 16 \\ \hdashline 8 & 9,18,21 & 16 \\ \hdashline 9 & 9,18,24 & 17 \\ \hdashline 10 & 9, 21,24 & 18 \\ \hdashline 11 & 12,15,18 & 15 \\ \hdashline 12 & 12, 15,21 & 16 \\ \hdashline 13 & 12, 15, 24 & 17 \\ \hdashline 14 & 12,18,21 & 17 \\ \hdashline 15 & 12,18,24 & 18 \\ \hdashline 16 & 12, 21,24 & 19 \\ \hdashline 17 & 15, 18,21 & 18 \\ \hdashline 18 & 15, 18,24 & 19 \\ \hdashline 19 & 15, 21,24 & 20 \\ \hdashline 20 & 18, 21,24 & 21 \\ \hdashline \end{array}






Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)121/2012/20144/20131/2013/20169/20142/2028/20392/20153/2045/20675/20163/2048/20768/20173/2051/20867/20183/2054/20972/20192/2038/20722/20201/2020/20400/20211/2021/20441/20\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 12 & 1/20 & 12/20 & 144/20 \\ \hdashline 13 & 1/20 & 13/20 & 169/20 \\ \hdashline 14 & 2/20 & 28/20 & 392/20 \\ \hdashline 15 & 3/20 & 45/20 & 675/20 \\ \hdashline 16 & 3/20 & 48/20 & 768/20 \\ \hdashline 17 & 3/20 & 51/20 & 867/20 \\ \hdashline 18 & 3/20 & 54/20 & 972/20 \\ \hdashline 19 & 2/20 & 38/20 & 722/20 \\ \hdashline 20 & 1/20 & 20/20 & 400/20 \\ \hdashline 21 & 1/20 & 21/20 & 441/20 \\ \hdashline \end{array}



Mean of sampling distribution 


μXˉ=E(Xˉ)=Xˉif(Xˉi)=33020=16.5=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{330}{20}=16.5=\mu



The variance of sampling distribution 


Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=555020(16.5)2=5.25=σ2n(NnN1)=\dfrac{5550}{20}-(16.5)^2=5.25= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})σXˉ=5.252.2913\sigma_{\bar{X}}=\sqrt{5.25}\approx2.2913

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS