Answer to Question #342942 in Statistics and Probability for Yoongi

Question #342942

Consider all possible samples of size 3 that can be drawn without replacement from the population 1, 5, and 8, 6, 10. Compute the following:

1. Population mean

2. Population variance

3. Population standard deviation

4. Illustrate the probability histogram of the sampling distribution of the means


1
Expert's answer
2022-05-20T12:12:21-0400

Given population = 1, 5, 8, 6, 10


Population mean "\\mu =\\dfrac{1+5+8+6+10}{5}=\\dfrac{30}{5}=6"


Population variance


"\\sigma^2= \\sum \\dfrac{ (x-\\mu)^2}{n}=\\dfrac{(1-6)^2+(5-6)^2+(8-6)^2+(6-6)^2+(10-6)^2}{5}=\\dfrac{46}{5}=9.2"


Population standard deviation "\\sigma=\\sqrt{ Variance}=\\sqrt{9.2}=3.033"

All possible samples and their means:

  1. 1, 5, 8 with mean (1+5+8)/3=4.66
  2. 1, 5, 6 with mean 4
  3. 1, 5, 10 with mean 5.33
  4. 1, 8, 6 with mean 5
  5. 1, 8, 10 with mean 6.33
  6. 1, 6, 10 with mean 5.66
  7. 5, 8, 6 with mean 6.33
  8. 5, 8, 10 with mean 7.66
  9. 5, 6, 10 with mean 7
  10. 8, 6, 10 with mean 8

Sampling distribution of the sample mean:


"\\def\\arraystretch{1.5} \\begin{array}{c:c:c:c:c:c:c} & \\bar{X} & f & f(\\bar{X}) & Xf(\\bar{X})& X^2f(\\bar{X}) \\\\ \\hline & 4.66 & 1 & 0.1 & 0.466 & 2.17\\\\ \\hdashline & 4 & 1 & 0.1 & 0.4 & 1.6 \\\\ \\hdashline & 5.33 & 1 & 0.1 & 0.533 & 2.84\\\\ \\hdashline & 5 & 1 & 0.1 & 0.5 & 0.25 \\\\ \\hdashline & 6.33& 2 & 0.2 & 1.266 & 8.013\\\\ \\hdashline & 5.66& 1 & 0.1 & 0.566 & 3.2 \\\\ \\hdashline & 7.66 & 1& 0.1& 0.766 & 5.86 \\\\ \\hdashline & 7 & 1 & 0.1& 0.7 & 4.9\\\\ \\hdashline & 8 & 1 & 0.1 & 0.8 & 6.4\\\\ \\hdashline Total= & & 10 & 1 & 6 & 35.23 \\\\ \\hdashline \\end{array}"



Probability histogram of the sampling distribution of the means:

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS