P(x)=n!(n−x)!x!pxqn−xP(x)=\frac {n!} {(n-x)!x!}p^xq^{n-x}P(x)=(n−x)!x!n!pxqn−x
where n=5,p=1/5,q=1−p=4/5n=5, p=1/5,q=1-p=4/5n=5,p=1/5,q=1−p=4/5
So,
P(3)=5!(5−3)!3!(15)3(45)5−3=0.08∗0.64=0.0512=5.12%P(3)=\frac {5!} {(5-3)!3!}(\frac 1 5)^3(\frac 4 5 )^{5-3}=0.08*0.64=0.0512=5.12\%P(3)=(5−3)!3!5!(51)3(54)5−3=0.08∗0.64=0.0512=5.12%
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment