Answer to Question #338820 in Statistics and Probability for Easy

Question #338820

Akosua works as the customer service officer at the Agarwal Eye Clinic located in Tesano, a suburb of




the Greater Accra region. The number of requests from male patients for emergency eye treatment that




she receives during any day may be modeled by a poisson distribution with mean of 2.6.Find the




probability that the number of requests from male patients for emergency eye treatment that Akosua




receives on a particular day is;




(i) Exactly 4




(ii)At least 1




(b) Find the probability that the number of requests from male patients for emergency eye




treatment that Akosua receives during a period of 5 days is 15 or fewer





1
Expert's answer
2022-05-13T13:50:33-0400

Let X=X= the number of of requests from male patients: XPo(λt).X\sim Po(\lambda t).

(a) λt=2.6(1)=2.6\lambda t=2.6(1)=2.6

(i)

P(X=4)=e2.6(2.6)44!=0.141422P(X=4)=\dfrac{e^{-2.6}(2.6)^4}{4!}=0.141422

(ii)


P(X1)=1P(X=0)P(X\ge 1)=1-P(X=0)

=1e2.6(2.6)00!=0.925726=1-\dfrac{e^{-2.6}(2.6)^0}{0!}=0.925726

(b)


λt=2.6(5)=13\lambda t=2.6(5)=13

P(X15)=P(X=0)+P(X=1)+P(X=2)P(X\le 15)=P(X=0)+P(X=1)+P(X=2)

+P(X=3)+P(X=4)+P(X=5)+P(X=3)+P(X=4)+P(X=5)

+P(X=6)+P(X=7)+P(X=8)+P(X=6)+P(X=7)+P(X=8)

+P(X=9)+P(X=10)+P(X=11)+P(X=9)+P(X=10)+P(X=11)

+P(X=12)+P(X=13)+P(X=14)+P(X=12)+P(X=13)+P(X=14)

+P(X=15)=e13(13)00!+e13(13)11!+P(X=15)=\dfrac{e^{-13}(13)^0}{0!}+\dfrac{e^{-13}(13)^1}{1!}

+e13(13)22!+e13(13)33!+e13(13)44!+\dfrac{e^{-13}(13)^2}{2!}+\dfrac{e^{-13}(13)^3}{3!}+\dfrac{e^{-13}(13)^4}{4!}

+e13(13)55!+e13(13)66!+e13(13)77!+\dfrac{e^{-13}(13)^5}{5!}+\dfrac{e^{-13}(13)^6}{6!}+\dfrac{e^{-13}(13)^7}{7!}

+e13(13)88!+e13(13)99!+e13(13)1010!+\dfrac{e^{-13}(13)^8}{8!}+\dfrac{e^{-13}(13)^9}{9!}+\dfrac{e^{-13}(13)^{10}}{10!}

+e13(13)1111!+e13(13)1212!+e13(13)1313!+\dfrac{e^{-13}(13)^{11}}{11!}+\dfrac{e^{-13}(13)^{12}}{12!}+\dfrac{e^{-13}(13)^{13}}{13!}

+e13(13)1414!+e13(13)1515!=0.76361+\dfrac{e^{-13}(13)^{14}}{14!}+\dfrac{e^{-13}(13)^{15}}{15!}=0.76361


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment