Question #338796

A. Find the length of the confidence interval (s = standard deviation)


1. s = 3

n = 250

Confidence level = 95%


2. s = 6

n = 400

Confidence level = 99%


B. Determine the sample size, given the following data.


1. s = 5

E = 2.42

Confidence level = 95%


2. You want to estimate the mean gasoline price within your town to the margin of error of 6 centavos. Local newspaper reports the standard deviation for gas price in the area is 30 centavos. What sample size is needed to estimate the mean gas prices at 99% confidence level?


3. Carlos wants to replicate a study where the highest observed value is 14.8 while the lowest is 14.2. He wants to estimate the population mean µ to the margin of error of 0.025 of its true value. Using 95% confidence level, find the sample size n that he need.


1
Expert's answer
2022-05-09T16:22:48-0400

A.

1. The critical value for α=0.05\alpha = 0.05 and df=n1=249df=n-1=249 degrees of freedom is tc=z1α/2;n1=1.969537.t_c = z_{1-\alpha/2; n-1} = 1.969537.


Lenght=2tc×sn=2(1.969537)×6400Lenght=2t_c\times\dfrac{s}{\sqrt{n}}=2(1.969537)\times\dfrac{6}{\sqrt{400}}

=0.7474=0.7474

2. The critical value for α=0.01\alpha = 0.01 and df=n1=399df=n-1=399 degrees of freedom is tc=z1α/2;n1=2.588207.t_c = z_{1-\alpha/2; n-1} = 2.588207.


Lenght=2tc×sn=2(2.588207)×3250Lenght=2t_c\times\dfrac{s}{\sqrt{n}}=2(2.588207)\times\dfrac{3}{\sqrt{250}}

=1.553=1.553


B.

1.


E=tc×snE=t_c\times\dfrac{s}{\sqrt{n}}

The critical value for α=0.05\alpha = 0.05 and df=n1=18df=n-1=18 degrees of freedom is tc=z1α/2;n1=2.100922.t_c = z_{1-\alpha/2; n-1} = 2.100922.


E=2.100922×519=2.41E=2.100922\times\dfrac{5}{\sqrt{19}}=2.41

The critical value for α=0.05\alpha = 0.05 and df=n1=17df=n-1=17 degrees of freedom is tc=z1α/2;n1=2.1098162.t_c = z_{1-\alpha/2; n-1} = 2.1098162.


E=2.109816×518=2.49E= 2.109816\times\dfrac{5}{\sqrt{18}}=2.49

n=19n=19


2. The critical value for α=0.01\alpha = 0.01 is zc=z1α/2=2.5758.z_c = z_{1-\alpha/2} = 2.5758.


E=zc×σnE=z_c\times\dfrac{\sigma}{\sqrt{n}}

n(zc×σE)2n\ge(\dfrac{z_c\times\sigma}{E})^2

n(2.5758×306)2n\ge(\dfrac{2.5758\times30}{6})^2

n=166n=166

3.


xˉ=14.2+14.82=14.5\bar{x}=\dfrac{14.2+14.8}{2}=14.5

E=0.025(14.5)=0.3625E=0.025(14.5)=0.3625

The critical value for α=0.05\alpha = 0.05 is zc=z1α/2=1.96.z_c = z_{1-\alpha/2} = 1.96.


E=zc×σnE=z_c\times\dfrac{\sigma}{\sqrt{n}}

n(zc×σE)2n\ge(\dfrac{z_c\times\sigma}{E})^2

n(1.96×σ0.3625)2n\ge(\dfrac{1.96\times\sigma}{0.3625})^2

Let σ=1\sigma=1

n=30n=30


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS