Q.3A population consists of five numbers 1, 3, 4, 5, and 7. (i) Enumerate all possible samples of size two which can be drawn from the population without replacement. (ii) Calculate the mean and variance of the population. (iii) Show that the mean of the sampling distribution of the sample means is equal to the population mean. (iv) Calculate the standard error of the mean.
We have population values 1,3,4,5 and 7 population size N=5 and sample size n=2.
(i) The number of possible samples which can be drawn without replacement is "^{N}C_n=^{5}C_2=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 1,3 & 4\/2 \\\\\n \\hdashline\n 2 & 1,4 & 5\/2 \\\\\n \\hdashline\n 3 & 1,5 & 6\/2 \\\\\n \\hdashline\n 4 & 1,7 & 8\/2 \\\\\n \\hdashline\n 5 & 3,4 & 7\/2 \\\\\n \\hdashline\n 6 & 3,5 & 8\/2 \\\\\n \\hdashline\n 7 & 3,7 & 10\/2 \\\\\n \\hdashline\n 8 & 4,5 & 9\/2 \\\\\n \\hdashline\n 9 & 4,7 & 11\/2 \\\\\n \\hdashline\n 10 & 5,7 & 12\/2 \\\\\n \\hdashline\n\\end{array}"(ii) Mean of population "(\\mu)" =
"\\dfrac{1+3+4+5+7}{5}=4"Variance of population
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{4}=2"
(iii)
Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=4=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{700}{40}-(4)^2=\\dfrac{3}{2}= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})"
(iv) The standard error of the mean
"\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{3}{2}}\\approx1.2247"
Comments
Leave a comment