A population N = 5 consists of the following values: 11, 13, 15, 17, and 19. Estimate the population mean (u) using a random variable of size n = 3
a. We have population values 11, 13, 15, 17, and 19, population size N=4 and sample size n=3.
Mean of population "(\\mu)" =
"\\dfrac{11+13+15+17+19}{5}=15"The number of possible samples which can be drawn without replacement is "\\dbinom{5}{3}=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 &11,13,15 & 39\/3 \\\\\n \\hdashline\n 2 & 11,13,17 & 41\/3 \\\\\n \\hdashline\n 3 & 11,13,19 & 43\/3 \\\\\n \\hdashline\n 4 & 11,15,17 & 43\/3 \\\\\n \\hdashline\n 5 & 11,15,19 & 45\/3 \\\\\n \\hdashline\n 6 & 11,17,19 & 47\/3 \\\\\n \\hdashline\n 7 & 13,15,17 & 45\/3 \\\\\n \\hdashline\n 8 & 13,15,19 & 47\/3 \\\\\n \\hdashline\n 9 & 13,17,19 & 49\/3 \\\\\n \\hdashline\n 10 & 15,17,19 & 51\/3 \\\\\n\\end{array}"Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{450}{30}=15=\\mu"
Comments
Leave a comment