Question #337949

A population N = 5 consists of the following values: 11, 13, 15, 17, and 19. Estimate the population mean (u) using a random variable of size n = 3

1
Expert's answer
2022-05-08T13:50:52-0400

a. We have population values 11, 13, 15, 17, and 19, population size N=4 and sample size n=3.

Mean of population (μ)(\mu) = 

11+13+15+17+195=15\dfrac{11+13+15+17+19}{5}=15


The number of possible samples which can be drawn without replacement is (53)=10.\dbinom{5}{3}=10.

noSampleSamplemean (xˉ)111,13,1539/3211,13,1741/3311,13,1943/3411,15,1743/3511,15,1945/3611,17,1947/3713,15,1745/3813,15,1947/3913,17,1949/31015,17,1951/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 &11,13,15 & 39/3 \\ \hdashline 2 & 11,13,17 & 41/3 \\ \hdashline 3 & 11,13,19 & 43/3 \\ \hdashline 4 & 11,15,17 & 43/3 \\ \hdashline 5 & 11,15,19 & 45/3 \\ \hdashline 6 & 11,17,19 & 47/3 \\ \hdashline 7 & 13,15,17 & 45/3 \\ \hdashline 8 & 13,15,19 & 47/3 \\ \hdashline 9 & 13,17,19 & 49/3 \\ \hdashline 10 & 15,17,19 & 51/3 \\ \end{array}





Xˉf(Xˉ)Xˉf(Xˉ)39/31/1039/3041/31/1041/3043/32/1086/3045/32/1090/3047/32/1094/3049/31/1049/3051/31/1051/30\def\arraystretch{1.5} \begin{array}{c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X})\\ \hline 39/3 & 1/10 & 39/30\\ \hdashline 41/3 & 1/10 & 41/30\\ \hdashline 43/3 & 2/10 & 86/30\\ \hdashline 45/3 & 2/10 & 90/30\\ \hdashline 47/3 & 2/10 & 94/30\\ \hdashline 49/3 & 1/10 & 49/30\\ \hdashline 51/3 & 1/10 & 51/30\\ \hdashline \end{array}


Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=45030=15=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{450}{30}=15=\mu




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS