We have a normal distribution, μ = 50 , σ = 10 , n = 16. μ=50,σ=10,n=16. μ = 50 , σ = 10 , n = 16.
Let's convert it to the standard normal distribution.
z ˉ = x ˉ − μ σ / n . \bar{z}=\cfrac{\bar{x}-\mu}{\sigma/\sqrt{n}}. z ˉ = σ / n x ˉ − μ .
a) z ˉ 1 = 60 − 50 10 / 16 = 4 , P ( X ˉ > 60 ) = = P ( Z ˉ > 4 ) = = 1 − P ( Z ˉ < 4 ) = = 1 − 1 = 0 (from z-table). \text{a) } \bar{z}_1=\cfrac{60-50}{10/\sqrt{16}}=4,\\
P(\bar{X}>60)=\\
=P(\bar{Z}>4)=\\
=1-P(\bar{Z}<4)=\\
=1-1=0\text{ (from z-table).} a) z ˉ 1 = 10/ 16 60 − 50 = 4 , P ( X ˉ > 60 ) = = P ( Z ˉ > 4 ) = = 1 − P ( Z ˉ < 4 ) = = 1 − 1 = 0 (from z-table).
b) z ˉ 2 = 45 − 50 10 / 16 = − 2 , P ( X ˉ < 45 ) = = P ( Z ˉ < − 2 ) = = 0.0228 (from z-table). \text{b) }
\bar{z}_2=\cfrac{45-50}{10/\sqrt{16}}=-2,\\
P(\bar{X}<45)=\\
=P(\bar{Z}<-2)=\\
=0.0228\text{ (from z-table).} b) z ˉ 2 = 10/ 16 45 − 50 = − 2 , P ( X ˉ < 45 ) = = P ( Z ˉ < − 2 ) = = 0.0228 (from z-table).
c) P ( 45 < X ˉ < 60 ) = = P ( − 2 < Z ˉ < 4 ) = = P ( Z ˉ < 4 ) − P ( Z ˉ < − 2 ) = = 1 − 0.0228 = 0.9772. \text{c) }
P(45<\bar{X}<60)=\\
=P(-2<\bar{Z}<4)=\\
=P(\bar{Z}<4)-P(\bar{Z}<-2)=\\
=1-0.0228=0.9772. c) P ( 45 < X ˉ < 60 ) = = P ( − 2 < Z ˉ < 4 ) = = P ( Z ˉ < 4 ) − P ( Z ˉ < − 2 ) = = 1 − 0.0228 = 0.9772.
Comments