We have population values 1,2,3,4,5 and 6 population size N=6 and sample size n=3.
Mean of population ( μ ) (\mu) ( μ ) =
1 + 2 + 3 + 4 + 5 + 6 6 = 3.5 \dfrac{1+2+3+4+5+6}{6}=3.5 6 1 + 2 + 3 + 4 + 5 + 6 = 3.5
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 17.5 6 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{17.5}{6} σ 2 = n Σ ( x i − x ˉ ) 2 = 6 17.5
σ = σ 2 = 17.5 6 ≈ 1.7078 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{17.5}{6}}\approx1.7078 σ = σ 2 = 6 17.5 ≈ 1.7078 The number of possible samples which can be drawn without replacement is N C n = 6 C 3 = 20. ^{N}C_n=^{6}C_3=20. N C n = 6 C 3 = 20.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 1 , 2 , 3 6 / 3 2 1 , 2 , 4 7 / 3 3 1 , 2 , 5 8 / 3 4 1 , 2 , 6 9 / 3 5 1 , 3 , 4 8 / 3 6 1 , 3 , 5 9 / 3 7 1 , 3 , 6 10 / 3 8 1 , 4 , 5 10 / 3 9 1 , 4 , 6 11 / 3 10 1 , 5 , 6 12 / 3 11 2 , 3 , 4 9 / 3 12 2 , 3 , 5 10 / 3 13 2 , 3 , 6 11 / 3 14 2 , 4 , 5 11 / 3 15 2 , 4 , 6 12 / 3 16 2 , 5 , 6 13 / 3 17 3 , 4 , 5 12 / 3 18 3 , 4 , 6 13 / 3 19 3 , 5 , 6 14 / 3 20 4 , 5 , 6 15 / 3 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 1,2,3 & 6/3 \\
\hdashline
2 & 1,2,4 & 7/3 \\
\hdashline
3 & 1,2,5 & 8/3 \\
\hdashline
4 & 1,2,6 & 9/3 \\
\hdashline
5 & 1,3,4 & 8/3 \\
\hdashline
6 & 1,3,5 & 9/3 \\
\hdashline
7 & 1,3,6 & 10/3 \\
\hdashline
8 & 1,4,5 & 10/3 \\
\hdashline
9 & 1,4,6 & 11/3 \\
\hdashline
10 & 1,5,6 & 12/3 \\
\hdashline
11 & 2,3,4 & 9/3 \\
\hdashline
12 & 2,3,5 & 10/3 \\
\hdashline
13 & 2,3,6 & 11/3 \\
\hdashline
14 & 2,4,5 & 11/3 \\
\hdashline
15 & 2,4,6 & 12/3 \\
\hdashline
16 & 2,5,6 & 13/3 \\
\hdashline
17 & 3,4,5 & 12/3 \\
\hdashline
18 & 3,4,6 & 13/3 \\
\hdashline
19 & 3,5,6 & 14/3 \\
\hdashline
20 & 4,5,6 & 15/3 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 S am pl e 1 , 2 , 3 1 , 2 , 4 1 , 2 , 5 1 , 2 , 6 1 , 3 , 4 1 , 3 , 5 1 , 3 , 6 1 , 4 , 5 1 , 4 , 6 1 , 5 , 6 2 , 3 , 4 2 , 3 , 5 2 , 3 , 6 2 , 4 , 5 2 , 4 , 6 2 , 5 , 6 3 , 4 , 5 3 , 4 , 6 3 , 5 , 6 4 , 5 , 6 S am pl e m e an ( x ˉ ) 6/3 7/3 8/3 9/3 8/3 9/3 10/3 10/3 11/3 12/3 9/3 10/3 11/3 11/3 12/3 13/3 12/3 13/3 14/3 15/3
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 6 / 3 1 / 20 6 / 60 36 / 180 7 / 3 1 / 20 7 / 60 49 / 180 8 / 3 2 / 20 16 / 60 128 / 180 9 / 3 3 / 20 27 / 60 243 / 180 10 / 3 3 / 20 30 / 60 300 / 180 11 / 3 3 / 20 33 / 60 363 / 180 12 / 3 3 / 20 36 / 60 432 / 180 13 / 3 2 / 20 26 / 60 338 / 180 14 / 3 1 / 20 14 / 60 196 / 180 15 / 3 1 / 20 15 / 60 225 / 180 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) &\bar{X}^2 f(\bar{X})\\ \hline
6/3 & 1/20 & 6/60 & 36/180\\
\hdashline
7/3 & 1/20 & 7/60 & 49/180\\
\hdashline
8/3 & 2/20 & 16/60 & 128/180\\
\hdashline
9/3 & 3/20 & 27/60 & 243/180 \\
\hdashline
10/3 & 3/20 & 30/60 & 300/180\\
\hdashline
11/3 & 3/20 & 33/60 & 363/180 \\
\hdashline
12/3 & 3/20 & 36/60 & 432/180 \\
\hdashline
13/3 & 2/20 & 26/60 & 338/180 \\
\hdashline
14/3 & 1/20 & 14/60 & 196/180 \\
\hdashline
15/3 & 1/20 & 15/60 & 225/180 \\
\hdashline
\end{array} X ˉ 6/3 7/3 8/3 9/3 10/3 11/3 12/3 13/3 14/3 15/3 f ( X ˉ ) 1/20 1/20 2/20 3/20 3/20 3/20 3/20 2/20 1/20 1/20 X ˉ f ( X ˉ ) 6/60 7/60 16/60 27/60 30/60 33/60 36/60 26/60 14/60 15/60 X ˉ 2 f ( X ˉ ) 36/180 49/180 128/180 243/180 300/180 363/180 432/180 338/180 196/180 225/180
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 3.5 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=3.5=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 3.5 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 2310 180 − ( 3.5 ) 2 = 7 12 = σ 2 n ( N − n N − 1 ) =\dfrac{2310}{180}-(3.5)^2=\dfrac{7}{12}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 180 2310 − ( 3.5 ) 2 = 12 7 = n σ 2 ( N − 1 N − n )
σ X ˉ = 7 12 ≈ 0.7638 \sigma_{\bar{X}}=\sqrt{\dfrac{7}{12}}\approx0.7638 σ X ˉ = 12 7 ≈ 0.7638
Comments