Consider a population consisting of 2,5,6,8, and 10. Suppose samples of size 2 are drawn from this population.
Q1.Compute the mean and the standard deviation of the population.
Q2. List all samples of size 5 and compute the mean for each sample.
Q3. Construct the sampling distribution of the sample means.
Q4. Calculate the mean of the sampling distribution of the sample means.
Q5. Calculate the standard deviation of the sampling distribution of the sample means.
Q1. We have population values 2,5,6,8,10, population size N=5 and sample size n=3.
Mean of population "(\\mu)" = "\\dfrac{2+5+6+8+10}{5}=6.2"
Variance of population
"=\\dfrac{17.64+1.44+0.04+3.24+14.44}{5}=7.36"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{7.36}\\approx2.712932"
Q2. The number of possible samples which can be drawn without replacement is "^{N}C_n=^{5}C_3=10."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 2,5,6 & 13\/3 \\\\\n \\hdashline\n 2 & 2,5,8 & 15\/3 \\\\\n \\hdashline\n 3 & 2,5,10 & 17\/3 \\\\\n \\hdashline\n 4 & 2,6,8 & 16\/3 \\\\\n \\hdashline\n 5 & 2,6,10 & 18\/3 \\\\\n \\hdashline\n 6 & 2,8,10 & 20\/3 \\\\\n \\hdashline\n 7 & 5,6,8 & 19\/3 \\\\\n \\hdashline\n 8 & 5,6,10 & 21\/3 \\\\\n \\hdashline\n 9 & 5,8,10 & 23\/3 \\\\\n \\hdashline\n 10 & 6,8,10 & 24\/3 \\\\\n \\hdashline \n\\end{array}"Q3.
Q4. Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=6.2=\\mu"Q5.The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{119}{3}-(6.2)^2=\\dfrac{3.68}{3}= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{3.68}{3}}\\approx1.107550"
Comments
Leave a comment