Question #334759

Consider a population consisting of 2,5,6,8, and 10. Suppose samples of size 2 are drawn from this population.



Q1.Compute the mean and the standard deviation of the population.


Q2. List all samples of size 5 and compute the mean for each sample.


Q3. Construct the sampling distribution of the sample means.


Q4. Calculate the mean of the sampling distribution of the sample means.


Q5. Calculate the standard deviation of the sampling distribution of the sample means.

1
Expert's answer
2022-04-29T05:27:54-0400

Q1. We have population values 2,5,6,8,10, population size N=5 and sample size n=3.

Mean of population (μ)(\mu) = 2+5+6+8+105=6.2\dfrac{2+5+6+8+10}{5}=6.2

Variance of population 


σ2=Σ(xixˉ)2n\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}


=17.64+1.44+0.04+3.24+14.445=7.36=\dfrac{17.64+1.44+0.04+3.24+14.44}{5}=7.36

σ=σ2=7.362.712932\sigma=\sqrt{\sigma^2}=\sqrt{7.36}\approx2.712932

Q2. The number of possible samples which can be drawn without replacement is NCn=5C3=10.^{N}C_n=^{5}C_3=10.

noSampleSamplemean (xˉ)12,5,613/322,5,815/332,5,1017/342,6,816/352,6,1018/362,8,1020/375,6,819/385,6,1021/395,8,1023/3106,8,1024/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 2,5,6 & 13/3 \\ \hdashline 2 & 2,5,8 & 15/3 \\ \hdashline 3 & 2,5,10 & 17/3 \\ \hdashline 4 & 2,6,8 & 16/3 \\ \hdashline 5 & 2,6,10 & 18/3 \\ \hdashline 6 & 2,8,10 & 20/3 \\ \hdashline 7 & 5,6,8 & 19/3 \\ \hdashline 8 & 5,6,10 & 21/3 \\ \hdashline 9 & 5,8,10 & 23/3 \\ \hdashline 10 & 6,8,10 & 24/3 \\ \hdashline \end{array}


Q3.


Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)13/31/1013/30169/9015/31/1015/30225/9016/31/1016/30256/9017/31/1017/30289/9018/31/1018/30324/9019/31/1019/30361/9020/31/1020/30400/9021/31/1021/30441/9023/31/1023/30529/9024/31/1024/30576/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 13/3 & 1/10 & 13/30 & 169/90 \\ \hdashline 15/3 & 1/10 & 15/30 & 225/90 \\ \hdashline 16/3 & 1/10 & 16/30 & 256/90 \\ \hdashline 17/3 & 1/10 & 17/30 & 289/90 \\ \hdashline 18/3 & 1/10 & 18/30 & 324/90 \\ \hdashline 19/3 & 1/10 & 19/30 & 361/90 \\ \hdashline 20/3 & 1/10 & 20/30 & 400/90 \\ \hdashline 21/3 & 1/10 & 21/30 & 441/90 \\ \hdashline 23/3 & 1/10 & 23/30 & 529/90 \\ \hdashline 24/3 & 1/10 & 24/30 & 576/90 \\ \hdashline \end{array}



Q4. Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=6.2=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=6.2=\mu



Q5.The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=1193(6.2)2=3.683=σ2n(NnN1)=\dfrac{119}{3}-(6.2)^2=\dfrac{3.68}{3}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=3.6831.107550\sigma_{\bar{X}}=\sqrt{\dfrac{3.68}{3}}\approx1.107550

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS