We have population values 1,2,3,4,5, population size N=5 and sample size n=2.
Mean of population ( μ ) (\mu) ( μ ) = 1 + 2 + 3 + 4 + 5 5 = 3 \dfrac{1+2+3+4+5}{5}=3 5 1 + 2 + 3 + 4 + 5 = 3
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 1 5 ( 4 + 1 + 0 + 1 + 4 ) \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{5}(4+1+0+1+4) σ 2 = n Σ ( x i − x ˉ ) 2 = 5 1 ( 4 + 1 + 0 + 1 + 4 )
= 2 =2 = 2
σ = σ 2 = 2 ≈ 1.4142 \sigma=\sqrt{\sigma^2}=\sqrt{2}\approx1.4142 σ = σ 2 = 2 ≈ 1.4142
The number of possible samples which can be drawn without replacement is N C n = 5 C 2 = 10. ^{N}C_n=^{5}C_2=10. N C n = 5 C 2 = 10.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 1 , 2 3 / 2 2 1 , 3 4 / 2 3 1 , 4 5 / 2 4 1 , 5 6 / 2 5 2 , 3 5 / 2 6 2 , 4 6 / 2 7 2 , 5 7 / 2 8 3 , 4 7 / 2 9 3 , 5 8 / 2 10 4 , 5 9 / 2 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 1,2 & 3/2 \\
\hdashline
2 & 1,3 & 4/2 \\
\hdashline
3 & 1,4 & 5/2\\
\hdashline
4 & 1,5 & 6/2 \\
\hdashline
5 & 2,3 & 5/2 \\
\hdashline
6 & 2,4 & 6/2 \\
\hdashline
7 & 2,5 & 7/2 \\
\hdashline
8 & 3,4 & 7/2 \\
\hdashline
9 & 3,5 & 8/2 \\
\hdashline
10 & 4,5 & 9/2 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 S am pl e 1 , 2 1 , 3 1 , 4 1 , 5 2 , 3 2 , 4 2 , 5 3 , 4 3 , 5 4 , 5 S am pl e m e an ( x ˉ ) 3/2 4/2 5/2 6/2 5/2 6/2 7/2 7/2 8/2 9/2
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 3 / 2 1 / 10 3 / 20 9 / 40 4 / 2 1 / 10 4 / 20 16 / 40 5 / 2 2 / 10 10 / 20 50 / 40 6 / 2 2 / 10 12 / 20 72 / 40 7 / 2 2 / 10 14 / 20 98 / 40 8 / 2 1 / 10 8 / 20 64 / 40 9 / 2 1 / 10 9 / 20 81 / 40 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
3/2 & 1/10 & 3/20 & 9/40 \\
\hdashline
4/2 & 1/10& 4/20 & 16/40 \\
\hdashline
5/2 & 2/10 & 10/20 & 50/40 \\
\hdashline
6/2 & 2/10 & 12/20 & 72/40 \\
\hdashline
7/2 & 2/10 & 14/20 & 98/40 \\
\hdashline
8/2 & 1/10 & 8/20 & 64/40 \\
\hdashline
9/2 & 1/10 & 9/20 & 81/40 \\
\hdashline
\end{array} X ˉ 3/2 4/2 5/2 6/2 7/2 8/2 9/2 f ( X ˉ ) 1/10 1/10 2/10 2/10 2/10 1/10 1/10 X ˉ f ( X ˉ ) 3/20 4/20 10/20 12/20 14/20 8/20 9/20 X ˉ 2 f ( X ˉ ) 9/40 16/40 50/40 72/40 98/40 64/40 81/40
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 3 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=3=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 3 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 39 4 − ( 3 ) 2 = 3 4 = σ 2 n ( N − n N − 1 ) =\dfrac{39}{4}-(3)^2=\dfrac{3}{4}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 4 39 − ( 3 ) 2 = 4 3 = n σ 2 ( N − 1 N − n )
σ X ˉ = 3 4 = 3 2 ≈ 0.8660 \sigma_{\bar{X}}=\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{3}}{2}\approx0.8660 σ X ˉ = 4 3 = 2 3 ≈ 0.8660 μ X ˉ = E ( X ˉ ) = 3 = μ \mu_{\bar{X}}=E(\bar{X})=3=\mu μ X ˉ = E ( X ˉ ) = 3 = μ
Comments