The number of road construction projects that take place at any one time in a certain city follows a Poisson distribution with a mean of 7. Find the probability that more than four road construction projects are currently taking place in the city
Let "X=" the number of road construction projects: "X\\sim Po(\\lambda)."
Given "\\lambda=7."
"=1-P(X=0)-P(X=1)"
"-P(X=2)-P(X=3)-P(X=4)"
"=1-\\dfrac{e^{-\\lambda}\\cdot\\lambda^0}{0!}-\\dfrac{e^{-\\lambda}\\cdot \\lambda^1}{1!}"
"-\\dfrac{e^{-\\lambda}\\cdot\\lambda^2}{2!}-\\dfrac{e^{-\\lambda}\\cdot \\lambda^3}{3!}-\\dfrac{e^{-\\lambda}\\cdot \\lambda^4}{4!}"
"=1-e^\n{-7}(1+7+49\/2+343\/6+2401\/24)"
"\\approx 0.82701"
Comments
Leave a comment