Question #333673

A confidence interval estimate is desired for the gain in a circuit on a semiconductor device. Assume the gain is normally distributed with standard deviation σ = 20.


a) Find a 95% confidence interval for μ when n = 10 and x̄ = 1000.


b) Find a 95% confidence interval for μ when n = 25 and x̄ = 1000.


c) Find a 99% confidence interval for μ when n = 10 and x̄ = 1000.


d) Find a 99% confidence interval for μ when n = 25 and x̄ = 1000.

1
Expert's answer
2022-04-27T00:42:36-0400

The corresponding confidence interval is computed as shown below:


CI=(xˉzc×σn,xˉ+zc×σn)CI=(\bar{x}-z_c\times\dfrac{\sigma}{\sqrt{n}}, \bar{x}+z_c\times\dfrac{\sigma}{\sqrt{n}})

The critical value for α=0.05\alpha = 0.05 is zc=z1α/2=1.96.z_c = z_{1-\alpha/2} = 1.96.

The critical value for α=0.01\alpha = 0.01 is zc=z1α/2=2.5758.z_c = z_{1-\alpha/2} =2.5758.

a)


CI=(10001.96×2010,1000+1.96×2010)CI=(1000-1.96\times\dfrac{20}{\sqrt{10}}, 1000+1.96\times\dfrac{20}{\sqrt{10}})

=(987.604,1012.396)=(987.604,1012.396)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 987.604<μ<1012.396,987.604 < \mu < 1012.396, which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (987.604,1012.396).(987.604,1012.396).


b)


CI=(10001.96×2025,1000+1.96×2025)CI=(1000-1.96\times\dfrac{20}{\sqrt{25}}, 1000+1.96\times\dfrac{20}{\sqrt{25}})

=(992.16,1007.84)=(992.16,1007.84)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 992.16<μ<1007.84,992.16 < \mu < 1007.84, which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (992.16,1007.84).(992.16, 1007.84).


c)


CI=(10002.5758×2010,1000+2.5758×2010)CI=(1000-2.5758\times\dfrac{20}{\sqrt{10}}, 1000+2.5758\times\dfrac{20}{\sqrt{10}})

=(983.709,1016.291)=(983.709,1016.291)

Therefore, based on the data provided, the 99% confidence interval for the population mean is 983.709<μ<1016.291,983.709 < \mu < 1016.291, which indicates that we are 99% confident that the true population mean μ\mu is contained by the interval (983.709,1016.291).(983.709,1016.291).


d)


CI=(10002.5758×2025,1000+2.5758×2025)CI=(1000-2.5758\times\dfrac{20}{\sqrt{25}}, 1000+2.5758\times\dfrac{20}{\sqrt{25}})

=(989.697,1010.303)=(989.697,1010.303)

Therefore, based on the data provided, the 99% confidence interval for the population mean is 989.697<μ<1010.303,989.697 < \mu < 1010.303, which indicates that we are 99% confident that the true population mean μ\mu is contained by the interval (989.697,1010.303).(989.697,1010.303).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS