n = 7
P(success) = 0.65
The number of successes among a fixed number of independent trials follows binomial distribution. Lets evaluate the definition of binomial probability at m = 0, 1, 2, 3:
P(X=m)=C(n,m)⋅pm⋅(1−p)n−mP(X=0)=C(7,0)⋅0.650⋅(1−0.65)7−0=0!(7−0)!7!⋅0.650⋅0.357=0.0006
P(X=1)=C(7,1)⋅0.651⋅(1−0.65)7−1=1!(7−1)!7!⋅0.651⋅0.356=0.0083
P(X=2)=C(7,2)⋅0.652⋅(1−0.65)7−2=2!(7−2)!7!⋅0.652⋅0.355=0.0466
P(X=3)=C(7,3)⋅0.653⋅(1−0.65)7−3=3!(7−3)!7!⋅0.653⋅0.354=0.1442
P(X<4)=P(X=0)+P(X=1)+P(X=2)+P(X=3)
P(X<4)=0.0006+0.0083+0.0466+0.1442=0.1997
Comments