If P(B) = 0.15, P(A | B) = 0.50, P(B′) = 0.85, and P(A | B′) = 0.60, find P(B | A)
P(B∣A)=P(B)⋅P(A∣B)P(B)⋅P(A∣B)+P(B′)⋅P(A∣B′)==0.15⋅0.500.15⋅0.50+0.85⋅0.60=0.1282.P(B|A) =\cfrac{P(B)\cdot P(A|B) } {P(B)\cdot P(A|B)+P( B')\cdot P(A|B')} =\\ =\cfrac{0.15\cdot0.50} {0.15\cdot0.50+0.85\cdot0.60} =\\0.1282.P(B∣A)=P(B)⋅P(A∣B)+P(B′)⋅P(A∣B′)P(B)⋅P(A∣B)==0.15⋅0.50+0.85⋅0.600.15⋅0.50=0.1282.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments