Find P.D. from B.D. using Stirling’s approximation.
According to the Stirling's approximation:
"n!\\approx\\sqrt{2\\pi n}(\\frac{n}{e})^n" for large n
The mean of the binomial distribution "\\mu=np\\Rarr p=\\frac{\\mu}{n}"
"P(x=k)=C_n^kp^k(1-p)^{n-k}=\\\\\n=\\frac{n!}{k!(n-k)!}(\\frac{\\mu}{n})^k(1-\\frac{\\mu}{n})^{n-k}\\approx\\\\\n\\approx\\frac{\\sqrt{2\\pi n}(n\/e)^n}{\\sqrt{2\\pi(n-k)}((n-k)\/e)^{n-k}k!}\\frac{\\mu^k}{n^k}\\frac{(1-\\mu\/n)^n}{(1-\\mu\/n)^{k}}"
Let's use some approximations for large n:
"(1-\\frac{\\mu}{n})^n\\approx e^{-\\mu}\\\\\n(1-\\frac{\\mu}{n})^k\\approx1\\\\\n\\sqrt{\\frac{n}{n-k}}\\approx1\\\\\n\\frac{(n\/e)^n}{((n-k)\/e)^{n-k}}\\approx\\frac{e^kn^k(1-k\/n)^k}{(1-k\/n)^n}\\approx\\frac{e^{-k}n^k}{e^{-k}}=n^k"
"P(k)\\approx n^k\\frac{\\mu^k}{n^kk!}e^{-\\mu}=\\frac{\\mu^ke^{-\\mu}}{k!}" - Poisson's distribution.
Comments
Leave a comment