The moment generating function for binomial distribution:
fx(t)=Ex(etx)=∑k=0netkCnkpk(1−p)n−k==∑k=0nCnk(pet)k(1−p)n−k=(pet+(1−p))nfx(1)(t)=n(pet+(1−p))n−1pet
Mean is the first central moment and is calculated by the next formula:
μ=fx(1)(0)=n(pe0+(1−p))n−1pe0=np
Comments