Question #328717

if the samples are 16, 17, 15, 24, 20, 20, 20, 23, 18, and 19. what is the point estimate of the population standard deviation?




1
Expert's answer
2022-04-21T10:07:38-0400

The sample standard deviation s is a point estimate of the population standard deviation σ:

s=(xxˉ)2n1;xˉ==16+17+15+24+20+20+20+23+18+1910==19.2;s=\sqrt{\cfrac{\sum{( x-\bar x)^2}}{n-1}};\\ \bar x=\\ =\cfrac{16+17+15+24+20+20+20+23+18+19}{10}=\\ =19.2;\\

Xxˉ=={1619.2,1719.2,1519.2,...,1919.2}=={3.2,2.2,4.2,...,0.2};X-\bar x=\\ =\begin{Bmatrix} 16-19.2, 17-19.2,15-19.2,...,19-19.2 \end{Bmatrix}=\\ =\begin{Bmatrix}-3.2,-2.2,-4.2,...,-0.2\end{Bmatrix};


(xxˉ)2=(3.2)2+(2.2)2+(4.2)2+...++(0.2)2=73.6;s=73.6101=2.86.\sum{( x-\bar x)^2}=(-3.2)^2+(-2.2)^2+(-4.2)^2+...+\\ +(-0.2)^2=73.6;\\ s=\sqrt{\cfrac{73.6}{10-1}}=2.86.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS