if the samples are 16, 17, 15, 24, 20, 20, 20, 23, 18, and 19. what is the point estimate of the population standard deviation?
The sample standard deviation s is a point estimate of the population standard deviation σ:
"s=\\sqrt{\\cfrac{\\sum{( x-\\bar x)^2}}{n-1}};\\\\\n\\bar x=\\\\\n=\\cfrac{16+17+15+24+20+20+20+23+18+19}{10}=\\\\\n=19.2;\\\\"
"X-\\bar x=\\\\\n=\\begin{Bmatrix}\n 16-19.2, 17-19.2,15-19.2,...,19-19.2\n\\end{Bmatrix}=\\\\\n=\\begin{Bmatrix}-3.2,-2.2,-4.2,...,-0.2\\end{Bmatrix};"
"\\sum{( x-\\bar x)^2}=(-3.2)^2+(-2.2)^2+(-4.2)^2+...+\\\\\n+(-0.2)^2=73.6;\\\\\ns=\\sqrt{\\cfrac{73.6}{10-1}}=2.86."
Comments
Leave a comment