The sample standard deviation s is a point estimate of the population standard deviation σ:
s = ∑ ( x − x ˉ ) 2 n − 1 ; x ˉ = = 16 + 17 + 15 + 24 + 20 + 20 + 20 + 23 + 18 + 19 10 = = 19.2 ; s=\sqrt{\cfrac{\sum{( x-\bar x)^2}}{n-1}};\\
\bar x=\\
=\cfrac{16+17+15+24+20+20+20+23+18+19}{10}=\\
=19.2;\\ s = n − 1 ∑ ( x − x ˉ ) 2 ; x ˉ = = 10 16 + 17 + 15 + 24 + 20 + 20 + 20 + 23 + 18 + 19 = = 19.2 ;
X − x ˉ = = { 16 − 19.2 , 17 − 19.2 , 15 − 19.2 , . . . , 19 − 19.2 } = = { − 3.2 , − 2.2 , − 4.2 , . . . , − 0.2 } ; X-\bar x=\\
=\begin{Bmatrix}
16-19.2, 17-19.2,15-19.2,...,19-19.2
\end{Bmatrix}=\\
=\begin{Bmatrix}-3.2,-2.2,-4.2,...,-0.2\end{Bmatrix}; X − x ˉ = = { 16 − 19.2 , 17 − 19.2 , 15 − 19.2 , ... , 19 − 19.2 } = = { − 3.2 , − 2.2 , − 4.2 , ... , − 0.2 } ;
∑ ( x − x ˉ ) 2 = ( − 3.2 ) 2 + ( − 2.2 ) 2 + ( − 4.2 ) 2 + . . . + + ( − 0.2 ) 2 = 73.6 ; s = 73.6 10 − 1 = 2.86. \sum{( x-\bar x)^2}=(-3.2)^2+(-2.2)^2+(-4.2)^2+...+\\
+(-0.2)^2=73.6;\\
s=\sqrt{\cfrac{73.6}{10-1}}=2.86. ∑ ( x − x ˉ ) 2 = ( − 3.2 ) 2 + ( − 2.2 ) 2 + ( − 4.2 ) 2 + ... + + ( − 0.2 ) 2 = 73.6 ; s = 10 − 1 73.6 = 2.86.
Comments