a. n= total number of ways =210 =1024
Since each answer can be true or false.
and m= favorable number of ways C108+C109+C1010=8!2!10!+9!10!1!+10!0!10!=45+10+1=56
P=m/n=56/1024=7/128
b. m=C106=6!4!10!=210
P=210/1024=0.21
c. μ=∑P(x)x
P(0)=P(10)=0!10!10!/1024=1/1024
P(1)=P(9)=1!9!10!/1024=10/1024
P(2)=P(8)=2!8!10!/1024=45/1024
P(3)=P(7)=3!7!10!/1024=120/1024
P(4)=P(6)=4!6!10!/1024=210/1024
P(5)=5!5!10!/1024=252/1024
μ=1/1024(0+10)+10/1024(1+9)+45/1024(2+8)+120/1024(3+7)+210/1024(4+6)+(5)252/1024=5
σx2=∑P(x)x2−(∑P(x)x)2==1/1024(0+100)+10/1024(1+81)+45/1024(4+64)+120/1024(9+49)+210/1024(16+36)+252(25)/1024−25=27.5−25=2.5
Comments