Question #328837

In a certain true or false exam, there are 10 questions


set for the candidate. If a candidate guesses the answer


at each time


a) What is the probability that the candidate will get 8 or


more correct answers?


b) What is the probability that the candidate will answer


6 questions correctly?


c) What is the mean number of correct answers you


would expect the candidate to obtain? Find the


variance

1
Expert's answer
2022-04-15T10:12:55-0400

a. n= total number of ways =210 =1024

Since each answer can be true or false.

and m= favorable number of ways C108+C109+C1010=10!8!2!+10!9!1!+10!10!0!=45+10+1=56C^8_{10}+C^{9}_{10}+C^{10}_{10}=\frac{10!}{8!2!}+\frac{10!}{9!}{1!}+\frac{10!}{10!0!}=45+10+1=56

P=m/n=56/1024=7/128

b. m=C106=10!6!4!=210m=C^6_{10}=\frac{10!}{6!4!}=210

P=210/1024=0.21

c. μ=P(x)x\mu=\sum P(x)x

P(0)=P(10)=10!0!10!/1024=1/1024P(0)=P(10)=\frac{10!}{0!10!}/1024=1/1024

P(1)=P(9)=10!1!9!/1024=10/1024P(1)=P(9)=\frac{10!}{1!9!}/1024=10/1024

P(2)=P(8)=10!2!8!/1024=45/1024P(2)=P(8)=\frac{10!}{2!8!}/1024=45/1024

P(3)=P(7)=10!3!7!/1024=120/1024P(3)=P(7)=\frac{10!}{3!7!}/1024=120/1024

P(4)=P(6)=10!4!6!/1024=210/1024P(4)=P(6)=\frac{10!}{4!6!}/1024=210/1024

P(5)=10!5!5!/1024=252/1024P(5)=\frac{10!}{5!5!}/1024=252/1024

μ=1/1024(0+10)+10/1024(1+9)+45/1024(2+8)+120/1024(3+7)+210/1024(4+6)+(5)252/1024=5\mu=1/1024(0+10)+10/1024(1+9)+45/1024(2+8)+120/1024(3+7)+210/1024(4+6)+(5)252/1024=5

σx2=P(x)x2(P(x)x)2==1/1024(0+100)+10/1024(1+81)+45/1024(4+64)+120/1024(9+49)+210/1024(16+36)+252(25)/102425=27.525=2.5\sigma_x^2=\sum P(x)x^2-(\sum P(x)x)^2=\\=1/1024(0+100)+10/1024(1+81)+45/1024(4+64)+120/1024(9+49)+210/1024(16+36)+252(25)/1024-25=27.5-25=2.5






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS