A population consists of the numbers 1, 2, 3, and 4 with the sample size of 2. Compute the variance of the sampling distribution of means.
Population mean:
"\\mu=\\cfrac{1+2+3+4} {4} =2.5."
Population variance:
"\\sigma^2=\\sum(x_i-\\mu)^2\\cdot P(x_i),"
"X-\\mu=\\begin{Bmatrix}\n 1-2.5, 2-2.5, 3-2.5, 4-2.5\n\\end{Bmatrix}="
"=\\begin{Bmatrix}\n-1.5, -0.5, 0.5, 1.5\n\\end{Bmatrix},"
"\\sigma^2=(-1.5)^2\\cdot \\cfrac{1}{4}+(-0.5)^2\\cdot \\cfrac{1}{4}+\\\\+0.5^2\\cdot \\cfrac{1}{4}+1.5^2\\cdot \\cfrac{1}{4}=1.25."
Variance of the sampling distribution of means:
"\\sigma^2_{\\bar x}=\\cfrac{\\sigma^2}{n}=\\cfrac{1.25}{2}=0.625."
Comments
Leave a comment