Box A and Box B both contain the numbers 2, 4, 6 and 8. Construct the probability mass function and draw the histogram of the sum when one number from each box is taken at a time, with replacement.
"Y=X_1+X_2\\\\P\\left( Y=4 \\right) =P\\left( 2,2 \\right) =\\frac{1}{4}\\cdot \\frac{1}{4}=0.0625\\\\P\\left( Y=6 \\right) =P\\left( 2,4 \\right) +P\\left( 4,2 \\right) =\\frac{1}{4}\\cdot \\frac{1}{4}+\\frac{1}{4}\\cdot \\frac{1}{4}=0.125\\\\P\\left( Y=8 \\right) =P\\left( 2,6 \\right) +P\\left( 4,4 \\right) +P\\left( 6,2 \\right) =\\frac{1}{4}\\cdot \\frac{1}{4}+\\frac{1}{4}\\cdot \\frac{1}{4}+\\frac{1}{4}\\cdot \\frac{1}{4}=0.1875\\\\P\\left( Y=10 \\right) =P\\left( 2,8 \\right) +P\\left( 4,6 \\right) +P\\left( 6,4 \\right) +P\\left( 8,2 \\right) =\\frac{1}{4}\\cdot \\frac{1}{4}+\\frac{1}{4}\\cdot \\frac{1}{4}+\\frac{1}{4}\\cdot \\frac{1}{4}+\\frac{1}{4}\\cdot \\frac{1}{4}=0.25\\\\P\\left( Y=12 \\right) =P\\left( 4,8 \\right) +P\\left( 6,6 \\right) +P\\left( 8,4 \\right) =\\frac{1}{4}\\cdot \\frac{1}{4}+\\frac{1}{4}\\cdot \\frac{1}{4}+\\frac{1}{4}\\cdot \\frac{1}{4}=0.1875\\\\P\\left( Y=14 \\right) =P\\left( 6,8 \\right) +P\\left( 8,6 \\right) =\\frac{1}{4}\\cdot \\frac{1}{4}+\\frac{1}{4}\\cdot \\frac{1}{4}=0.125\\\\P\\left( Y=16 \\right) =P\\left( 8,8 \\right) =\\frac{1}{4}\\cdot \\frac{1}{4}=0.0625"
Comments
Leave a comment