Question #328665

Box A and Box B both contain the numbers 2, 4, 6 and 8. Construct the probability mass function and draw the histogram of the sum when one number from each box is taken at a time, with replacement.


1
Expert's answer
2022-04-15T09:34:00-0400

Y=X1+X2P(Y=4)=P(2,2)=1414=0.0625P(Y=6)=P(2,4)+P(4,2)=1414+1414=0.125P(Y=8)=P(2,6)+P(4,4)+P(6,2)=1414+1414+1414=0.1875P(Y=10)=P(2,8)+P(4,6)+P(6,4)+P(8,2)=1414+1414+1414+1414=0.25P(Y=12)=P(4,8)+P(6,6)+P(8,4)=1414+1414+1414=0.1875P(Y=14)=P(6,8)+P(8,6)=1414+1414=0.125P(Y=16)=P(8,8)=1414=0.0625Y=X_1+X_2\\P\left( Y=4 \right) =P\left( 2,2 \right) =\frac{1}{4}\cdot \frac{1}{4}=0.0625\\P\left( Y=6 \right) =P\left( 2,4 \right) +P\left( 4,2 \right) =\frac{1}{4}\cdot \frac{1}{4}+\frac{1}{4}\cdot \frac{1}{4}=0.125\\P\left( Y=8 \right) =P\left( 2,6 \right) +P\left( 4,4 \right) +P\left( 6,2 \right) =\frac{1}{4}\cdot \frac{1}{4}+\frac{1}{4}\cdot \frac{1}{4}+\frac{1}{4}\cdot \frac{1}{4}=0.1875\\P\left( Y=10 \right) =P\left( 2,8 \right) +P\left( 4,6 \right) +P\left( 6,4 \right) +P\left( 8,2 \right) =\frac{1}{4}\cdot \frac{1}{4}+\frac{1}{4}\cdot \frac{1}{4}+\frac{1}{4}\cdot \frac{1}{4}+\frac{1}{4}\cdot \frac{1}{4}=0.25\\P\left( Y=12 \right) =P\left( 4,8 \right) +P\left( 6,6 \right) +P\left( 8,4 \right) =\frac{1}{4}\cdot \frac{1}{4}+\frac{1}{4}\cdot \frac{1}{4}+\frac{1}{4}\cdot \frac{1}{4}=0.1875\\P\left( Y=14 \right) =P\left( 6,8 \right) +P\left( 8,6 \right) =\frac{1}{4}\cdot \frac{1}{4}+\frac{1}{4}\cdot \frac{1}{4}=0.125\\P\left( Y=16 \right) =P\left( 8,8 \right) =\frac{1}{4}\cdot \frac{1}{4}=0.0625


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS