the mean serum cholesterol level of a large population of overweight children is 220 mg per deciliter (mg/dl), and the standard deviation is 16.3 mg/gl. If a random sample of 35 over which children is selected, find the probability that the mean will be between 220 and 222 mg/ dl. Assume the serum cholesterol level variable is normally distributed.
"P\\left( 220\\leqslant \\bar{x}\\leqslant 222 \\right) =P\\left( \\sqrt{n}\\frac{220-\\mu}{\\sigma}\\leqslant \\sqrt{n}\\frac{\\bar{x}-\\mu}{\\sigma}\\leqslant \\sqrt{n}\\frac{222-\\mu}{\\sigma} \\right) =\\\\=P\\left( \\sqrt{35}\\frac{220-220}{16.3}\\leqslant Z\\leqslant \\sqrt{35}\\frac{222-220}{16.3} \\right) =P\\left( 0\\leqslant Z\\leqslant 0.725899 \\right) =\\\\=\\varPhi \\left( 0.725899 \\right) -\\varPhi \\left( 0 \\right) =0.7660-0.5=0.266"
Comments
Leave a comment