Question #327020

Suppose the mean amount of cholesterol in eggs labeled “large” is 186 milligrams, with standard deviation 7 milligrams. Find the probability that the mean amount of cholesterol in a sample of 144 eggs will be within 1.5 milligrams of the population mean.

1
Expert's answer
2022-04-12T04:39:51-0400

We have a normal distribution, μ=186,σ=7,n=144.\mu=186, \sigma=7,n=144.

Let's convert it to the standard normal distribution,

z=xˉμσ/n.z=\cfrac{\bar{x}-\mu}{\sigma/\sqrt{n}}.


xˉ1=1861.5=184.5;xˉ2=186+1.5=187.5;z1=184.51867/144=2.57;z2=187.51867/144=2.57;P(184.5<Xˉ<187.5)=P(2.57<Z<2.57)==P(Z<2.57)P(Z<2.57)==0.99490.0051=0.9898 (from z-table).\bar{x}_1=186-1.5=184.5;\\\bar{x}_2=186+1.5=187.5;\\ z_1=\cfrac{184.5-186}{7/\sqrt{144}}=-2.57;\\ z_2=\cfrac{187.5-186}{7/\sqrt{144}}=2.57;\\ P(184.5<\bar{X}<187.5)=P(-2.57<Z<2.57)=\\ =P(Z<2.57)-P(Z<-2.57)=\\ =0.9949-0.0051=0.9898 \text{ (from z-table).}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS