Samples of two cards are drawn at random from a population of 6 cards numbered from 1 to 6.
A. How many possible samples can be drawn?
B. Construct the sampling distribution of sample means.
a.
b.m(1,2)=(1+2)/2=1.5
m(1,3)=(1+3)/2=2
m(1,4)=(1+4)/2=2.5
m(1,5)=(1+5)/2=3
m(1,6)=(1+6)/2=3.5
m(2,3)=(2+3)/2=2.5
m(2,4)=(2+4)/2=3
m(2,5)=(2+5)/2=3.5
m(2,6)=(2+6)/2=4
m(3,4)=(3+4)/2=3.5
m(3,5)=(3+5)/2=4
m(3,6)=(3+6)/2=4.5
m(4,5)=(4+5)/2=4.5
m(4,6)=(4+6)/2=5
m(5,6)=(5+6)/2=5.5
Frequency F(1.5)=F(2)=F(5)=F(5.5)=1
F(2.5)=F(3)=F(4)=F(4.5)=2
F(3.5)=3
Probability
P(1.5)=P(2)=P(5)=P(5.5)=1/15
P(2.5)=P(3)=P(4)=P(4.5)=2/15
P(3.5)=3/15
Comments