Samples of two cards are drawn at random from a population of 6 cards numbered from 1 to 6.
A. How many possible samples can be drawn?
B. Construct the sampling distribution of sample means.
a. "C^2_6=\\frac{6!}{2!4!}=15"
b.m(1,2)=(1+2)/2=1.5
m(1,3)=(1+3)/2=2
m(1,4)=(1+4)/2=2.5
m(1,5)=(1+5)/2=3
m(1,6)=(1+6)/2=3.5
m(2,3)=(2+3)/2=2.5
m(2,4)=(2+4)/2=3
m(2,5)=(2+5)/2=3.5
m(2,6)=(2+6)/2=4
m(3,4)=(3+4)/2=3.5
m(3,5)=(3+5)/2=4
m(3,6)=(3+6)/2=4.5
m(4,5)=(4+5)/2=4.5
m(4,6)=(4+6)/2=5
m(5,6)=(5+6)/2=5.5
Frequency F(1.5)=F(2)=F(5)=F(5.5)=1
F(2.5)=F(3)=F(4)=F(4.5)=2
F(3.5)=3
Probability "P(x)=F(x)\/\\sum F(x)"
P(1.5)=P(2)=P(5)=P(5.5)=1/15
P(2.5)=P(3)=P(4)=P(4.5)=2/15
P(3.5)=3/15
"E(x)=\\sum P(x)x=1\/15(2+5+1.5+5.5)+2\/15(2.5+3+4+4.5)+3\/15(3.5)=14\/15+28\/15+10.5\/15=52.5\/15=3.5,"
"\\sigma^2=1\/15(4+25+2.25+30.25)+2\/15(6.25+9+16+20.25)+3\/15x12.25-12.25=4.1+6.87+2.45-12.25=1.17"
Comments
Leave a comment