A sample of 60 Grade 9 students' ages was obtained to estimate the mean age of all Grade 9 students.
X = 15.3 years and the population variance is 16.
a. What is the point estimate for u.?
b. Find the 95% confidence interval for u?
c. Find the 99% confidence interval for u?
a:μ^=xˉ=15.3b:(xˉ−σnz1+γ2,xˉ+σnz1+γ2)=(15.3−460⋅1.960,15.3+460⋅1.960)==(14.2879,16.3121)c:(xˉ−σnz1+γ2,xˉ+σnz1+γ2)=(15.3−460⋅2.576,15.3+460⋅2.576)==(13.9698,16.6302)a:\\\hat{\mu}=\bar{x}=15.3\\b:\\\left( \bar{x}-\frac{\sigma}{\sqrt{n}}z_{\frac{1+\gamma}{2}},\bar{x}+\frac{\sigma}{\sqrt{n}}z_{\frac{1+\gamma}{2}} \right) =\left( 15.3-\frac{4}{\sqrt{60}}\cdot 1.960,15.3+\frac{4}{\sqrt{60}}\cdot 1.960 \right) =\\=\left( 14.2879,16.3121 \right) \\c:\\\left( \bar{x}-\frac{\sigma}{\sqrt{n}}z_{\frac{1+\gamma}{2}},\bar{x}+\frac{\sigma}{\sqrt{n}}z_{\frac{1+\gamma}{2}} \right) =\left( 15.3-\frac{4}{\sqrt{60}}\cdot 2.576,15.3+\frac{4}{\sqrt{60}}\cdot 2.576 \right) =\\=\left( 13.9698,16.6302 \right)a:μ^=xˉ=15.3b:(xˉ−nσz21+γ,xˉ+nσz21+γ)=(15.3−604⋅1.960,15.3+604⋅1.960)==(14.2879,16.3121)c:(xˉ−nσz21+γ,xˉ+nσz21+γ)=(15.3−604⋅2.576,15.3+604⋅2.576)==(13.9698,16.6302)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment