Question #323689

Two boxes, 1 and 2 are given. Suppose box 1 contains 6 black and 7 white balls. Box 2 contains 9 black and 8 white balls. Three balls are selected at random from box 1 and put into box 2. Then two balls are selected at random from box 2.

1) what is the probability that these two balls have the same color

2) what is the probability that these two balls have the different colors


1
Expert's answer
2022-04-08T12:50:46-0400

1:H1:wwwfrombox1H2:wwbfrombox1H3:wbbfrombox1H4:bbbfrombox1A:samecolorsP(H1)=C73C133=0.122378P(H2)=C72C61C133=0.440559P(H3)=C71C62C133=0.367133P(H4)=C63C133=0.0699301P(AH1)=[9b,11w]=C112+C92C202=0.478947P(AH2)=[10b,10w]=C102+C102C202=0.473684P(AH3)=[11b,9w]=C92+C112C202=0.478947P(AH4)=[12b,8w]=C82+C122C202=0.494737P(A)=P(AH1)P(H1)+P(AH2)P(H2)+P(AH3)P(H3)+P(AH4)P(H4)==0.4789470.122378+0.4736840.440559+0.4789470.367133+0.4947370.0699301==0.4777332:P(different)=1P(same)=10.477733=0.5222671:\\H_1:www\,\,from\,\,box\,\,1\\H_2:wwb\,\,from\,\,box\,\,1\\H_3:wbb\,\,from\,\,box\,\,1\\H_4:bbb\,\,from\,\,box\,\,1\\A: same\,\,colors\\P\left( H_1 \right) =\frac{C_{7}^{3}}{C_{13}^{3}}=0.122378\\P\left( H_2 \right) =\frac{C_{7}^{2}C_{6}^{1}}{C_{13}^{3}}=0.440559\\P\left( H_3 \right) =\frac{C_{7}^{1}C_{6}^{2}}{C_{13}^{3}}=0.367133\\P\left( H_4 \right) =\frac{C_{6}^{3}}{C_{13}^{3}}=0.0699301\\P\left( A|H_1 \right) =\left[ 9b,11w \right] =\frac{C_{11}^{2}+C_{9}^{2}}{C_{20}^{2}}=0.478947\\P\left( A|H_2 \right) =\left[ 10b,10w \right] =\frac{C_{10}^{2}+C_{10}^{2}}{C_{20}^{2}}=0.473684\\P\left( A|H_3 \right) =\left[ 11b,9w \right] =\frac{C_{9}^{2}+C_{11}^{2}}{C_{20}^{2}}=0.478947\\P\left( A|H_4 \right) =\left[ 12b,8w \right] =\frac{C_{8}^{2}+C_{12}^{2}}{C_{20}^{2}}=0.494737\\P\left( A \right) =P\left( A|H_1 \right) P\left( H_1 \right) +P\left( A|H_2 \right) P\left( H_2 \right) +P\left( A|H_3 \right) P\left( H_3 \right) +P\left( A|H_4 \right) P\left( H_4 \right) =\\=0.478947\cdot 0.122378+0.473684\cdot 0.440559+0.478947\cdot 0.367133+0.494737\cdot 0.0699301=\\=0.477733\\2: P\left( different \right) =1-P\left( same \right) =1-0.477733=0.522267


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS