1 : P ( A ) = [ 4 p o s s i b l e f l o o r s 4 p a s s e n g e r s t o t a l v a r i a n t s 4 4 ] = 4 4 4 = 0.015625 2 : P ( B ) = [ C 4 2 = 6 v a r i a n t s o f f l o o r s 2 4 − 2 = 14 ( f o r e a c h o n e f l o o r b u t a l l o n t h e 1 s t o r a l l o n t h e 2 n d i s n o t o k ) ] = 6 ⋅ 14 4 4 = 0.328125 4 : P ( D ) = [ 4 ! = 24 v a r i a n t s ] = 24 4 4 = 0.09375 3 : P ( C ) = 1 − P ( A ) − P ( B ) − P ( D ) = 1 − 0.015625 − 0.328125 − 0.09375 = 0.5625 1:P\left( A \right) =\left[ \begin{array}{c} 4 possible\,\,floors\\ 4 passengers\\ total\,\,variants\,\,4^4\\\end{array} \right] =\frac{4}{4^4}=0.015625\\2:P\left( B \right) =\left[ \begin{array}{c} C_{4}^{2}=6\,\,variants\,\,of\,\,floors\\ 2^4-2=14\left( for\,\,each\,\,one\,\,floor\,\,but\,\,all\,\,on\,\,the\,\,1st\,\,or\,\,all\,\,on\,\,the\,\,2nd\,\,is\,\,not\,\,ok \right)\\\end{array} \right] =\frac{6\cdot 14}{4^4}=0.328125\\4:P\left( D \right) =\left[ 4!=24\,\,variants \right] =\frac{24}{4^4}=0.09375\\3:P\left( C \right) =1-P\left( A \right) -P\left( B \right) -P\left( D \right) =1-0.015625-0.328125-0.09375=0.5625 1 : P ( A ) = ⎣ ⎡ 4 p oss ib l e f l oors 4 p a sse n g ers t o t a l v a r ian t s 4 4 ⎦ ⎤ = 4 4 4 = 0.015625 2 : P ( B ) = [ C 4 2 = 6 v a r ian t s o f f l oors 2 4 − 2 = 14 ( f or e a c h o n e f l oor b u t a ll o n t h e 1 s t or a ll o n t h e 2 n d i s n o t o k ) ] = 4 4 6 ⋅ 14 = 0.328125 4 : P ( D ) = [ 4 ! = 24 v a r ian t s ] = 4 4 24 = 0.09375 3 : P ( C ) = 1 − P ( A ) − P ( B ) − P ( D ) = 1 − 0.015625 − 0.328125 − 0.09375 = 0.5625
Comments