8. Let (x1, x2, ..., xn) be independent measurements of a random variable X with density function
f(x) = e−(x−α), x > α. Find an estimator, ˆ
α, of α by method of moments.
"EX_1=\\int_a^{+\\infty}{xf\\left( x \\right) dx}=\\int_a^{+\\infty}{xe^{-x+a}dx}=e^a\\left( -xe^{-x}|_{a}^{+\\infty}+\\int_a^{+\\infty}{e^{-x}dx} \\right) =\\\\=e^a\\left( ae^{-a}+e^{-a} \\right) =a+1\\\\\\bar{x}=\\hat{a}+1\\Rightarrow \\hat{a}=\\bar{x}-1"
Comments
Leave a comment