8. Let (x1, x2, ..., xn) be independent measurements of a random variable X with density function
f(x) = e−(x−α), x > α. Find an estimator, ˆ
α, of α by method of moments.
EX1=∫a+∞xf(x)dx=∫a+∞xe−x+adx=ea(−xe−x∣a+∞+∫a+∞e−xdx)==ea(ae−a+e−a)=a+1xˉ=a^+1⇒a^=xˉ−1EX_1=\int_a^{+\infty}{xf\left( x \right) dx}=\int_a^{+\infty}{xe^{-x+a}dx}=e^a\left( -xe^{-x}|_{a}^{+\infty}+\int_a^{+\infty}{e^{-x}dx} \right) =\\=e^a\left( ae^{-a}+e^{-a} \right) =a+1\\\bar{x}=\hat{a}+1\Rightarrow \hat{a}=\bar{x}-1EX1=∫a+∞xf(x)dx=∫a+∞xe−x+adx=ea(−xe−x∣a+∞+∫a+∞e−xdx)==ea(ae−a+e−a)=a+1xˉ=a^+1⇒a^=xˉ−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments