Question #323011

8. Let (x1, x2, ..., xn) be independent measurements of a random variable X with density function




f(x) = e−(x−α), x > α. Find an estimator, ˆ




α, of α by method of moments.

1
Expert's answer
2022-04-04T16:13:36-0400

EX1=a+xf(x)dx=a+xex+adx=ea(xexa++a+exdx)==ea(aea+ea)=a+1xˉ=a^+1a^=xˉ1EX_1=\int_a^{+\infty}{xf\left( x \right) dx}=\int_a^{+\infty}{xe^{-x+a}dx}=e^a\left( -xe^{-x}|_{a}^{+\infty}+\int_a^{+\infty}{e^{-x}dx} \right) =\\=e^a\left( ae^{-a}+e^{-a} \right) =a+1\\\bar{x}=\hat{a}+1\Rightarrow \hat{a}=\bar{x}-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS