The mean gasoline consumption of 10 cars is 28 liters with a standard
deviation of 1.6 liters. Find the interval estimate using 95% confidence
interval.
95%CI=(xˉ−t0.025,n−1sn,xˉ+t0.025,n−1sn)=95\%CI=(\bar x-t_{0.025,n-1}\frac{s}{\sqrt{n}},\bar x+t_{0.025,n-1}\frac{s}{\sqrt{n}})=95%CI=(xˉ−t0.025,n−1ns,xˉ+t0.025,n−1ns)=
=(28−2.261.610,28+2.261.610)=(26.86,29.14).=(28-2.26\frac{1.6}{\sqrt{10}},28+2.26\frac{1.6}{\sqrt{10}})=(26.86,29.14).=(28−2.26101.6,28+2.26101.6)=(26.86,29.14).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments