Consider Y, the number of successes in Mindependent Bernoulli trials each with success
probability X. Suppose that X itself is a r.v which is uniformly distributed over (1, 0)
(a) Find the p.m.f of Y and identify the distribution
(b) What is the mean and variance of Y.
"a:\\\\P\\left( Y=n \\right) =\\int_0^1{P\\left( Y=n|p \\right) dp}=\\int_0^1{C_{M}^{n}p^n\\left( 1-p \\right) ^{M-n}dp}=\\\\=C_{M}^{n}B\\left( n+1,M+1-n \\right) =C_{M}^{n}\\frac{\\varGamma \\left( n+1 \\right) \\varGamma \\left( M+1-n \\right)}{\\varGamma \\left( M+2 \\right)}=\\\\=C_{M}^{n}\\frac{n!\\left( M-n \\right) !}{\\left( M+1 \\right) !}=\\frac{1}{M+1}\\\\Y\\sim Unif\\left\\{ 0,1,...,M \\right\\} \\\\b:\\\\EY=\\sum_{i=0}^M{i\\cdot \\frac{1}{M+1}}=\\frac{M\\left( M+1 \\right)}{2\\left( M+1 \\right)}=\\frac{M}{2}\\\\EY^2=\\sum_{i=0}^M{i^2\\cdot \\frac{1}{M+1}}=\\frac{M\\left( M+1 \\right) \\left( 2M+1 \\right)}{6\\left( M+1 \\right)}=\\frac{M\\left( 2M+1 \\right)}{6}\\\\Var\\left( Y \\right) =\\frac{M\\left( 2M+1 \\right)}{6}-\\left( \\frac{M}{2} \\right) ^2=\\frac{M\\left( M+2 \\right)}{12}\\\\"
Comments
Leave a comment