In an experiment of tossing a fair coin three times, find the P(X=2), P(X > 1) and P(1 ≤ X < 2). Let X be the random variable giving the number of tails.
Sample space: {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.
P(X=2)=38=0.375.P(X=2)=\frac{3}{8}=0.375.P(X=2)=83=0.375.
P(X>1)=P(X=2)+P(X=3)=38+18=12=0.5.P(X>1)=P(X=2)+P(X=3)=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}=0.5.P(X>1)=P(X=2)+P(X=3)=83+81=21=0.5.
P(1≤X<2)=P(X=1)=38=0.375.P(1\le X<2)=P(X=1)=\frac{3}{8}=0.375.P(1≤X<2)=P(X=1)=83=0.375.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment