The number of customers arriving per day at a certain automobile service facility is assumed to follow a Poisson Distribution with mean λ=20. Use normal approximation to find the probability that in a given day.
a) less than 25 customers will arrive;
b) at least 10 customers will arrive;
c) between 15 and 19 inclusive will arrive;
"Using\\; normal\\; approximation\\;\\\\\n \\mu =\\lambda=20, \\sigma= \\sqrt{\\lambda}= \\sqrt{20}\\approx4.47\\\\\na)\\;P(x< 25)=P(x<25.5)=P(z<\\frac{25.5-20}{4.47})\\\\\n=P(z<1.23)=0.5+P(0<z<1.23)\\\\\n=0.5+0.3907=0.8907\\\\\nb)\\;P(x\\geq 10)=P(x\\geq 9.5)=P(z\\geq \\frac{9.5-20}{4.47})\\\\\n=P(z\\geq -2.35)=0.5+P(0<z<2.35)\\\\\n=0.5+0.4906=0.9906\\\\\nc)\\;P(15<x< 19)=P(14.5<x<19.5)\\\\\n=P(\\frac{14.5-20}{4.47}<z<\\frac{19.5-20}{4.47})\\\\\n=P(-1.23<z<-0.11)\\\\\n=P(0<z<1.23)-P(0<z<0.11)\\\\\n=0.3907+0.0438=0.3469\\\\"
Comments
Leave a comment