Suppose that X is a binomial random variable with n = 100 and p = 0.1
a) compute the exact probability that X is less than 4.
b) approximate the probability that X is less than 4 and compare to the result in part (a).
c) approximate the probability that 8 < X < 12
"a:\\\\P\\left( X<4 \\right) =\\sum_{i=0}^3{P\\left( X=i \\right)}=\\sum_{i=0}^3{C_{100}^{i}\\cdot 0.1^i\\cdot \\left( 1-0.1 \\right) ^{100-i}}=\\\\=0.9^{100}+100\\cdot 0.1\\cdot 0.9^{99}+C_{100}^{2}\\cdot 0.1^2\\cdot 0.9^{98}+C_{100}^{3}\\cdot 0.1^3\\cdot 0.9^{97}=0.00783649\\\\b:\\\\P\\left( X<4 \\right) =P\\left( \\hat{p}<0.04 \\right) =P\\left( \\sqrt{n}\\frac{\\hat{p}-p}{\\sqrt{p\\left( 1-p \\right)}}<\\sqrt{n}\\frac{0.04-p}{\\sqrt{p\\left( 1-p \\right)}} \\right) \\approx \\\\\\approx P\\left( Z<\\sqrt{100}\\frac{0.04-0.1}{\\sqrt{0.1\\left( 1-0.1 \\right)}} \\right) =P\\left( Z<-2 \\right) =\\varPhi \\left( -2 \\right) =0.02275\\\\c:\\\\P\\left( 8<X<12 \\right) =P\\left( 0.08<\\hat{p}<0.12 \\right) =P\\left( \\sqrt{n}\\frac{0.08-p}{\\sqrt{p\\left( 1-p \\right)}}<\\sqrt{n}\\frac{\\hat{p}-p}{\\sqrt{p\\left( 1-p \\right)}}<\\sqrt{n}\\frac{0.12-p}{\\sqrt{p\\left( 1-p \\right)}} \\right) \\approx \\\\\\approx P\\left( \\sqrt{100}\\frac{0.08-0.1}{\\sqrt{0.1\\left( 1-0.1 \\right)}}<Z<\\sqrt{100}\\frac{0.12-0.1}{\\sqrt{0.1\\left( 1-0.1 \\right)}} \\right) =\\\\=P\\left( -0.6667<Z<0.6667 \\right) =2\\varPhi \\left( 0.6667 \\right) -1=2\\cdot 0.7475-1=0.495"
Comments
Leave a comment