Solve the given problem. Dont forget to show your solutions.
1.AA pop fourulstion consist of the four numbers 1,2,4 and 5. List all the possible samples of sizes n=3 wich can be drawn with replacement from the population. Find the following : a. Population mean b. Population variance c. Population standard deviation d. Mean of the sampling distribution of sample means e. Variance of the sampling distribution of sample means f standard deviation of the sampling distribution of sample means
The number of the samples is the number of combinations of size n from a set S of size m with replacement:
"N=\\begin{pmatrix}\n n+m-1\\\\\n n\n\\end{pmatrix}=\\cfrac{(n+m-1)!}{n!\\cdot (m-1)!}=\\\\\n=\\cfrac{(4+3-1)!}{3!\\cdot (4-1)!}=\\cfrac{6!}{3!\\cdot 3!}=\\cfrac{4\\cdot5\\cdot6}{2\\cdot3}=20."
All the possible samples of sizes n=3 wich can be drawn with replacement from the population:
"\\{ (1,1,1), (1,1,2),(1,1,4),(1,1,5),(1,2,2),\\\\\n(1,2,4),(1,2,5),(1,4,4),(1,4,5),(1,5,5),\\\\\n(2,2,2),(2,2,4),(2,2,5),(2,4,4),(2,4,5),\\\\\n(2,5,5),(4,4,4),(4,4,5),(4,5,5),(5,5,5)\\}."
a. Population mean:
"\\mu=\\sum x_i\\cdot P(x_i)=\\\\\n=1\\cdot\\cfrac{1}{4}+2\\cdot\\cfrac{1}{4}+4\\cdot\\cfrac{1}{4}+5\\cdot\\cfrac{1}{4}=3."
b. Population variance:
"\\sigma^2=\\sum(x_i-\\mu)^2\\cdot P(x_i),"
"X-\\mu=\\begin{Bmatrix}\n 1-3, 2-3, 4-3, 5-3\n\\end{Bmatrix}="
"=\\begin{Bmatrix}\n-2, -1, 1, 2\n\\end{Bmatrix},"
"\\sigma^2=(-2)^2\\cdot \\cfrac{1}{4}+(-1)^2\\cdot \\cfrac{1}{4}+1^2\\cdot \\cfrac{1}{4}+2^2\\cdot \\cfrac{1}{4}=2.5."
c. Population standard deviation:
"\\sigma=\\sqrt{2.5}=1.58."
For d., e., f., we'll use the properties of sampling distributions of sample means.
d. Mean of the sampling distribution of sample means:
"\\mu_{\\bar x} =\\mu=3."
e. Variance of the sampling distribution of sample means:
"\\sigma^2_{\\bar x}=\\cfrac{\\sigma^2}{n}=\\cfrac{2.5}{2}=1.25."
f. standard deviation of the sampling distribution of sample means:
"\\sigma_{\\bar x}=\\cfrac{\\sigma}{\\sqrt n}=\\cfrac{1.58}{\\sqrt 2}=1.12."
Comments
Leave a comment