Question #320006

Solve the given problem. Dont forget to show your solutions.




1.AA pop fourulstion consist of the four numbers 1,2,4 and 5. List all the possible samples of sizes n=3 wich can be drawn with replacement from the population. Find the following : a. Population mean b. Population variance c. Population standard deviation d. Mean of the sampling distribution of sample means e. Variance of the sampling distribution of sample means f standard deviation of the sampling distribution of sample means

1
Expert's answer
2022-03-30T04:35:58-0400

The number of the samples is the number of combinations of size n from a set S of size m with replacement:

N=(n+m1n)=(n+m1)!n!(m1)!==(4+31)!3!(41)!=6!3!3!=45623=20.N=\begin{pmatrix} n+m-1\\ n \end{pmatrix}=\cfrac{(n+m-1)!}{n!\cdot (m-1)!}=\\ =\cfrac{(4+3-1)!}{3!\cdot (4-1)!}=\cfrac{6!}{3!\cdot 3!}=\cfrac{4\cdot5\cdot6}{2\cdot3}=20.

All the possible samples of sizes n=3 wich can be drawn with replacement from the population:

{(1,1,1),(1,1,2),(1,1,4),(1,1,5),(1,2,2),(1,2,4),(1,2,5),(1,4,4),(1,4,5),(1,5,5),(2,2,2),(2,2,4),(2,2,5),(2,4,4),(2,4,5),(2,5,5),(4,4,4),(4,4,5),(4,5,5),(5,5,5)}.\{ (1,1,1), (1,1,2),(1,1,4),(1,1,5),(1,2,2),\\ (1,2,4),(1,2,5),(1,4,4),(1,4,5),(1,5,5),\\ (2,2,2),(2,2,4),(2,2,5),(2,4,4),(2,4,5),\\ (2,5,5),(4,4,4),(4,4,5),(4,5,5),(5,5,5)\}.


a. Population mean:

μ=xiP(xi)==114+214+414+514=3.\mu=\sum x_i\cdot P(x_i)=\\ =1\cdot\cfrac{1}{4}+2\cdot\cfrac{1}{4}+4\cdot\cfrac{1}{4}+5\cdot\cfrac{1}{4}=3.


b. Population variance:

σ2=(xiμ)2P(xi),\sigma^2=\sum(x_i-\mu)^2\cdot P(x_i),

Xμ={13,23,43,53}=X-\mu=\begin{Bmatrix} 1-3, 2-3, 4-3, 5-3 \end{Bmatrix}=

={2,1,1,2},=\begin{Bmatrix} -2, -1, 1, 2 \end{Bmatrix},

σ2=(2)214+(1)214+1214+2214=2.5.\sigma^2=(-2)^2\cdot \cfrac{1}{4}+(-1)^2\cdot \cfrac{1}{4}+1^2\cdot \cfrac{1}{4}+2^2\cdot \cfrac{1}{4}=2.5.


c. Population standard deviation:

σ=2.5=1.58.\sigma=\sqrt{2.5}=1.58.


For d., e., f., we'll use the properties of sampling distributions of sample means.


d. Mean of the sampling distribution of sample means:

μxˉ=μ=3.\mu_{\bar x} =\mu=3.


e. Variance of the sampling distribution of sample means:

σxˉ2=σ2n=2.52=1.25.\sigma^2_{\bar x}=\cfrac{\sigma^2}{n}=\cfrac{2.5}{2}=1.25.


f. standard deviation of the sampling distribution of sample means:

σxˉ=σn=1.582=1.12.\sigma_{\bar x}=\cfrac{\sigma}{\sqrt n}=\cfrac{1.58}{\sqrt 2}=1.12.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS