Calculate the standard deviation and CV for the age distribution presented below:
Age: 09.5-12.5 12.5-15.5 15.5-18.5 18.5-21.5 21.5-24.5 24.5-27.5 27.5-30.5
Frequency: 3 14 23 12 8 4 1
Explain your results
Class Class midpoint (x) Frequency(F) F"\\cdot x" F"\\cdot(x-\\mu)^2"
09.5 -12.5 11 3 33 151.57
12.5- 15.5 14 14 196 236.26
15.5-18.5 17 23 391 28.24
18.5-21.5 20 12 240 42.96
21.5-24.5 23 8 184 191.45
24.5-27.5 26 4 104 249.13
27.5-30.5 29 1 29 118.64
Total 65 1177 1018.25
"mean =\\frac{\\sum f\\cdot x}{\\sum f}"
mean ="\\frac{1177}{65}" =18.108
standard deviation= "\\sqrt{\\frac{\\sum f\\cdot( x-\\mu)}{\\sum f-1}}"
standard deviation ="\\sqrt{\\frac{1018.25}{64}}"
standard deviation =1.997
CV="\\frac{s}{mean }" "\\cdot 100"
CV="\\frac{1.997}{18.108}" "\\cdot 100"
CV=11.03%
Since the coefficient of variation is low the the level of dispersion around the mean is low.
Comments
Leave a comment